TU Darmstadt / ULB / TUbiblio

Estimating Parameter Regions for Structured Parameter Tuning via Reduced Order Subsystem Models

Schurig, Roland ; Himmel, Andreas ; Mešanović, Amer ; Braatz, Richard D. ; Findeisen, Rolf (2023)
Estimating Parameter Regions for Structured Parameter Tuning via Reduced Order Subsystem Models.
2023 American Control Conference. San Diego, USA (31.05.2023 - 02.06.2023)
doi: 10.23919/ACC55779.2023.10156542
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Many large-scale systems are composed of subsystems operated by decentralized controllers, which are fixed in their structure, yet have parameters to tune. Initial tuning or subsequent adjustments dof those parameters ue to varying operating conditions or changes in the network of interconnected systems, while ensuring stability, performance, and security, pose a challenging task due to the overall complexity and size. Subsystems may not be willing or allowed to expose detailed information for safety and privacy reasons. In some cases, a comprehensive system model might not be available for global tuning, or the resulting problem might be computationally infeasible. To enable meaningful global parameter tuning while allowing for data privacy and security, we propose that the subsystems themselves should provide reduced-order models. These models capture the parametric dependency of the subsystem dynamics on the controller parameters. Specifically, we present a method to construct a region in the subsystems’ parameter space in which the deviation of the subsystem and the reduced-order model stays below a specified error bound and in which both systems are stable. A necessary and sufficient condition for such regions is derived using robust control theory. Notably, sufficiency can be expressed in terms of a linear matrix inequality. We demonstrate the approach by considering the temperature control of a large-scale building complex.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Schurig, Roland ; Himmel, Andreas ; Mešanović, Amer ; Braatz, Richard D. ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Estimating Parameter Regions for Structured Parameter Tuning via Reduced Order Subsystem Models
Sprache: Englisch
Publikationsjahr: 3 Juli 2023
Verlag: IEEE
Buchtitel: 2023 American Control Conference (ACC 2023)
Veranstaltungstitel: 2023 American Control Conference
Veranstaltungsort: San Diego, USA
Veranstaltungsdatum: 31.05.2023 - 02.06.2023
DOI: 10.23919/ACC55779.2023.10156542
Kurzbeschreibung (Abstract):

Many large-scale systems are composed of subsystems operated by decentralized controllers, which are fixed in their structure, yet have parameters to tune. Initial tuning or subsequent adjustments dof those parameters ue to varying operating conditions or changes in the network of interconnected systems, while ensuring stability, performance, and security, pose a challenging task due to the overall complexity and size. Subsystems may not be willing or allowed to expose detailed information for safety and privacy reasons. In some cases, a comprehensive system model might not be available for global tuning, or the resulting problem might be computationally infeasible. To enable meaningful global parameter tuning while allowing for data privacy and security, we propose that the subsystems themselves should provide reduced-order models. These models capture the parametric dependency of the subsystem dynamics on the controller parameters. Specifically, we present a method to construct a region in the subsystems’ parameter space in which the deviation of the subsystem and the reduced-order model stays below a specified error bound and in which both systems are stable. A necessary and sufficient condition for such regions is derived using robust control theory. Notably, sufficiency can be expressed in terms of a linear matrix inequality. We demonstrate the approach by considering the temperature control of a large-scale building complex.

Freie Schlagworte: emergenCITY, emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 17 Jul 2023 10:16
Letzte Änderung: 12 Dez 2024 13:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen