TU Darmstadt / ULB / TUbiblio

Robust Multisensor Fusion for Reliable Mapping and Navigation in Degraded Visual Conditions

Torchalla, Moritz ; Schnaubelt, Marius ; Daun, Kevin ; Stryk, Oskar von (2021)
Robust Multisensor Fusion for Reliable Mapping and Navigation in Degraded Visual Conditions.
2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). New York, USA (25.10.2021-27.10.2021)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We address the problem of robust simultaneous mapping and localization in degraded visual conditions using low-cost off-the-shelf radars. Current methods often use high- end radar sensors or are tightly coupled to specific sensors, limiting the applicability to new robots. In contrast, we present a sensor-agnostic processing pipeline based on a novel forward sensor model to achieve accurate updates of signed distance function-based maps and robust optimization techniques to reach robust and accurate pose estimates. Our evaluation demonstrates accurate mapping and pose estimation in indoor environments under poor visual conditions and higher accuracy compared to existing methods on publicly available benchmark data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Torchalla, Moritz ; Schnaubelt, Marius ; Daun, Kevin ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: Robust Multisensor Fusion for Reliable Mapping and Navigation in Degraded Visual Conditions
Sprache: Englisch
Publikationsjahr: 2021
Veranstaltungstitel: 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
Veranstaltungsort: New York, USA
Veranstaltungsdatum: 25.10.2021-27.10.2021
Kurzbeschreibung (Abstract):

We address the problem of robust simultaneous mapping and localization in degraded visual conditions using low-cost off-the-shelf radars. Current methods often use high- end radar sensors or are tightly coupled to specific sensors, limiting the applicability to new robots. In contrast, we present a sensor-agnostic processing pipeline based on a novel forward sensor model to achieve accurate updates of signed distance function-based maps and robust optimization techniques to reach robust and accurate pose estimates. Our evaluation demonstrates accurate mapping and pose estimation in indoor environments under poor visual conditions and higher accuracy compared to existing methods on publicly available benchmark data.

Freie Schlagworte: emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
TU-Projekte: Bund/BMBF|13N14861|A-DRZ
HMWK|III L6-519/03/05.001-(0016)|emergenCity TP Bock
Hinterlegungsdatum: 11 Nov 2021 07:17
Letzte Änderung: 26 Aug 2022 10:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen