TU Darmstadt / ULB / TUbiblio

Numerical solution of optimal control problems by direct collocation

Stryk, Oskar von ; Stryk, Oskar von (1993)
Numerical solution of optimal control problems by direct collocation.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

By an appropriate discretization of control and state variables, a constrained optimal control problem is transformed into a finite dimensional nonlinear program which can be solved by standard SQP-methods Gilletal1986. Convergence properties of the discretization are derived. From a solution of this method known as direct collocation, these properties are used to obtain reliable estimates of adjoint variables. In the presence of active state constraints, these estimates can be significantly improved by including the switching structure of the state constraint into the optimization procedure. Two numerical examples are presented.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 1993
Autor(en): Stryk, Oskar von ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: Numerical solution of optimal control problems by direct collocation
Sprache: Deutsch
Publikationsjahr: 1993
Verlag: Birkhäuser
Buchtitel: Optimal Control - Calculus of Variations, Optimal Control Theory and Numerical Methods
Reihe: International Series of Numerical Mathematics
Band einer Reihe: 111
Zugehörige Links:
Kurzbeschreibung (Abstract):

By an appropriate discretization of control and state variables, a constrained optimal control problem is transformed into a finite dimensional nonlinear program which can be solved by standard SQP-methods Gilletal1986. Convergence properties of the discretization are derived. From a solution of this method known as direct collocation, these properties are used to obtain reliable estimates of adjoint variables. In the presence of active state constraints, these estimates can be significantly improved by including the switching structure of the state constraint into the optimization procedure. Two numerical examples are presented.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
Hinterlegungsdatum: 20 Jun 2016 23:26
Letzte Änderung: 15 Mär 2019 09:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen