TU Darmstadt / ULB / TUbiblio

Adaptive Observation Strategy for Dispersion Process Estimation Using Cooperating Mobile Sensors

Ritter, Tobias ; Euler, Juliane ; Ulbrich, Stefan ; Stryk, Oskar von (2014)
Adaptive Observation Strategy for Dispersion Process Estimation Using Cooperating Mobile Sensors.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Efficient online state estimation of dynamic dispersion processes plays an important role in a variety of safety-critical applications. The use of mobile sensor platforms is increasingly considered in this context, but implies the generation of situation-dependent vehicle trajectories providing high information gain in real-time. In this paper, a new adaptive observation strategy is presented combining state estimation based on partial differential equation models of the dispersion process with a model-predictive control approach for multiple cooperating mobile sensors. In a repeating sequential procedure, based on the Ensemble Transform Kalman Filter, the uncertainty of the current estimate is determined and used to find valuable measurement locations. Those serve as target points for the controller providing optimal trajectories subject to the vehicles’ motion dynamics and cooperation constraints. First promising results regarding accuracy and efficiency were obtained.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Ritter, Tobias ; Euler, Juliane ; Ulbrich, Stefan ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: Adaptive Observation Strategy for Dispersion Process Estimation Using Cooperating Mobile Sensors
Sprache: Englisch
Publikationsjahr: 2014
Buchtitel: Proceedings of the 19th IFAC World Congress
Zugehörige Links:
Kurzbeschreibung (Abstract):

Efficient online state estimation of dynamic dispersion processes plays an important role in a variety of safety-critical applications. The use of mobile sensor platforms is increasingly considered in this context, but implies the generation of situation-dependent vehicle trajectories providing high information gain in real-time. In this paper, a new adaptive observation strategy is presented combining state estimation based on partial differential equation models of the dispersion process with a model-predictive control approach for multiple cooperating mobile sensors. In a repeating sequential procedure, based on the Ensemble Transform Kalman Filter, the uncertainty of the current estimate is determined and used to find valuable measurement locations. Those serve as target points for the controller providing optimal trajectories subject to the vehicles’ motion dynamics and cooperation constraints. First promising results regarding accuracy and efficiency were obtained.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 20 Jun 2016 23:26
Letzte Änderung: 08 Apr 2019 13:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen