TU Darmstadt / ULB / TUbiblio

Centralized Ensemble-Based Trajectory Planning of Cooperating Sensors for Estimating Atmospheric Dispersion Processes

Euler, Juliane ; Ritter, Tobias ; Ulbrich, Stefan ; Stryk, Oskar von
Hrsg.: Ravela, Sai ; Sandu, Adrian (2015)
Centralized Ensemble-Based Trajectory Planning of Cooperating Sensors for Estimating Atmospheric Dispersion Processes.
In: Dynamic Data-Driven Environmental Systems Science
doi: 10.1007/978-3-319-25138-7
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

Optimal coordination of multiple sensors is crucial for efficient atmospheric dispersion estimation. The proposed approach adaptively provides optimized trajectories with respect to sensor cooperation and uncertainty reduction of the process estimate. To avoid the time-consuming solution of a complex optimal control problem, estimation and vehicle control are considered separate problems linked in a sequential procedure. Based on a partial differential equation model, the Ensemble Transform Kalman Filter is applied for data assimilation and generation of observation targets offering maximum information gain. A centralized model-predictive vehicle controller simultaneously provides optimal target allocation and collision-free path planning. Extending previous work, continuous measuring is assumed, which attaches more significance to the course of the trajectories. Local attraction points are introduced to draw the sensors to regions of high uncertainty. Moreover, improved target updates increase the sampling efficiency. A simulated test case illustrates the approach in comparison to non-attracted trajectories.

Typ des Eintrags: Buchkapitel
Erschienen: 2015
Herausgeber: Ravela, Sai ; Sandu, Adrian
Autor(en): Euler, Juliane ; Ritter, Tobias ; Ulbrich, Stefan ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: Centralized Ensemble-Based Trajectory Planning of Cooperating Sensors for Estimating Atmospheric Dispersion Processes
Sprache: Englisch
Publikationsjahr: 2015
Verlag: Springer International Publishing
Buchtitel: Dynamic Data-Driven Environmental Systems Science
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 8964
DOI: 10.1007/978-3-319-25138-7
Zugehörige Links:
Kurzbeschreibung (Abstract):

Optimal coordination of multiple sensors is crucial for efficient atmospheric dispersion estimation. The proposed approach adaptively provides optimized trajectories with respect to sensor cooperation and uncertainty reduction of the process estimate. To avoid the time-consuming solution of a complex optimal control problem, estimation and vehicle control are considered separate problems linked in a sequential procedure. Based on a partial differential equation model, the Ensemble Transform Kalman Filter is applied for data assimilation and generation of observation targets offering maximum information gain. A centralized model-predictive vehicle controller simultaneously provides optimal target allocation and collision-free path planning. Extending previous work, continuous measuring is assumed, which attaches more significance to the course of the trajectories. Local attraction points are introduced to draw the sensors to regions of high uncertainty. Moreover, improved target updates increase the sampling efficiency. A simulated test case illustrates the approach in comparison to non-attracted trajectories.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 20 Jun 2016 23:26
Letzte Änderung: 19 Mär 2019 14:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen