Aulig, Nikola (2017)
Generic Topology Optimization Based on Local State Features.
Buch, Zweitveröffentlichung
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
The automatic creation of optimal concepts for mechanical structures in the computer-aided design process has become an important area of research. Continuum topology optimization methods determine the distribution of material within a pre-defined design space and, thus, not only the shape, but also the fundamental geometric layout of a structure. For this task, the majority of the existing, numerical optimization methods requires mathematical gradient information. However, when addressing optimization problems that involve highly non-linear or black-box simulations, it can be difficult to obtain satisfactory results or gradient information at all. In order to provide design concepts also for these types of problems, this thesis presents a generic topology optimization approach. The novel method realizes a self-contained learning component that utilizes physical simulation data to generate a search direction. Based on a continuous problem formulation, every design variable is improved iteratively by a learned update-signal. The individual update-signals are computed from local state features and substitute sensitivities of the design variables. Evolutionary optimization or supervised learning adapt the model parameters for determination of the update-signals to the chosen optimization goal. In empirical studies, the novel method reproduces reference structures with minimum compliance. When applied to a practical problem from the challenging domain of vehicle crashworthiness optimization, specifically the minimization of intrusion, it provides superior design concepts when compared to a frequently applied heuristic method. The results confirm that the proposed method is capable to yield innovative solutions to so far unsolved topology optimization problems.
Typ des Eintrags: | Buch | ||||
---|---|---|---|---|---|
Erschienen: | 2017 | ||||
Autor(en): | Aulig, Nikola | ||||
Art des Eintrags: | Zweitveröffentlichung | ||||
Titel: | Generic Topology Optimization Based on Local State Features | ||||
Sprache: | Deutsch | ||||
Referenten: | Adamy, Prof. Dr. Jürgen ; Sendhoff, Prof. Dr. Bernhard | ||||
Publikationsjahr: | 2017 | ||||
Ort: | Düsseldorf | ||||
Publikationsdatum der Erstveröffentlichung: | 2017 | ||||
Verlag: | VDI Verlag | ||||
Reihe: | Fortschritt-Berichte VDI : Reihe 20 | ||||
Band einer Reihe: | 468 | ||||
Datum der mündlichen Prüfung: | 4 Mai 2017 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/6861 | ||||
Kurzbeschreibung (Abstract): | The automatic creation of optimal concepts for mechanical structures in the computer-aided design process has become an important area of research. Continuum topology optimization methods determine the distribution of material within a pre-defined design space and, thus, not only the shape, but also the fundamental geometric layout of a structure. For this task, the majority of the existing, numerical optimization methods requires mathematical gradient information. However, when addressing optimization problems that involve highly non-linear or black-box simulations, it can be difficult to obtain satisfactory results or gradient information at all. In order to provide design concepts also for these types of problems, this thesis presents a generic topology optimization approach. The novel method realizes a self-contained learning component that utilizes physical simulation data to generate a search direction. Based on a continuous problem formulation, every design variable is improved iteratively by a learned update-signal. The individual update-signals are computed from local state features and substitute sensitivities of the design variables. Evolutionary optimization or supervised learning adapt the model parameters for determination of the update-signals to the chosen optimization goal. In empirical studies, the novel method reproduces reference structures with minimum compliance. When applied to a practical problem from the challenging domain of vehicle crashworthiness optimization, specifically the minimization of intrusion, it provides superior design concepts when compared to a frequently applied heuristic method. The results confirm that the proposed method is capable to yield innovative solutions to so far unsolved topology optimization problems. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-68616 | ||||
Zusätzliche Informationen: | Fortschr.-Ber. VDI Reihe 20 Nr. 468, ISSN 0178-9473 |
||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme) |
||||
Hinterlegungsdatum: | 29 Okt 2017 20:55 | ||||
Letzte Änderung: | 22 Feb 2024 14:15 | ||||
PPN: | |||||
Referenten: | Adamy, Prof. Dr. Jürgen ; Sendhoff, Prof. Dr. Bernhard | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 4 Mai 2017 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Generic Topology Optimization Based on Local State Features. (deposited 29 Okt 2017 20:55) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |