Aulig, Nikola (2017)
Generic topology optimization based on local state features.
Technische Universität Darmstadt
Dissertation, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
The automatic creation of optimal concepts for mechanical structures in the computer-aided design process has become an important area of research. Continuum topology optimization methods determine the distribution of material within a pre-defined design space and, thus, not only the shape, but also the fundamental geometric layout of a structure. For this task, the majority of the existing, numerical optimization methods requires mathematical gradient information. However, when addressing optimization problems that involve highly non-linear or black-box simulations, it can be difficult to obtain satisfactory results or gradient information at all. In order to provide design concepts also for these types of problems, this thesis presents a generic topology optimization approach. The novel method realizes a self-contained learning component that utilizes physical simulation data to generate a search direction. Based on a continuous problem formulation, every design variable is improved iteratively by a learned update-signal. The individual update-signals are computed from local state features and substitute sensitivities of the design variables. Evolutionary optimization or supervised learning adapt the model parameters for determination of the update-signals to the chosen optimization goal. In empirical studies, the novel method reproduces reference structures with minimum compliance. When applied to a practical problem from the challenging domain of vehicle crashworthiness optimization, specifically the minimization of intrusion, it provides superior design concepts when compared to a frequently applied heuristic method. The results confirm that the proposed method is capable to yield innovative solutions to so far unsolved topology optimization problems.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2017 | ||||
Autor(en): | Aulig, Nikola | ||||
Art des Eintrags: | Bibliographie | ||||
Titel: | Generic topology optimization based on local state features | ||||
Sprache: | Englisch | ||||
Referenten: | Adamy, Prof. Dr. J. ; Sendhoff, Prof. Dr. B. | ||||
Publikationsjahr: | 2017 | ||||
Ort: | Düsseldorf | ||||
Verlag: | VDI Verlag | ||||
Reihe: | Fortschritt-Berichte VDI. Reihe 20: Rechnerunterstützte Verfahren | ||||
Band einer Reihe: | 468 | ||||
Datum der mündlichen Prüfung: | 4 Mai 2017 | ||||
Zugehörige Links: | |||||
Kurzbeschreibung (Abstract): | The automatic creation of optimal concepts for mechanical structures in the computer-aided design process has become an important area of research. Continuum topology optimization methods determine the distribution of material within a pre-defined design space and, thus, not only the shape, but also the fundamental geometric layout of a structure. For this task, the majority of the existing, numerical optimization methods requires mathematical gradient information. However, when addressing optimization problems that involve highly non-linear or black-box simulations, it can be difficult to obtain satisfactory results or gradient information at all. In order to provide design concepts also for these types of problems, this thesis presents a generic topology optimization approach. The novel method realizes a self-contained learning component that utilizes physical simulation data to generate a search direction. Based on a continuous problem formulation, every design variable is improved iteratively by a learned update-signal. The individual update-signals are computed from local state features and substitute sensitivities of the design variables. Evolutionary optimization or supervised learning adapt the model parameters for determination of the update-signals to the chosen optimization goal. In empirical studies, the novel method reproduces reference structures with minimum compliance. When applied to a practical problem from the challenging domain of vehicle crashworthiness optimization, specifically the minimization of intrusion, it provides superior design concepts when compared to a frequently applied heuristic method. The results confirm that the proposed method is capable to yield innovative solutions to so far unsolved topology optimization problems. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme) |
||||
Hinterlegungsdatum: | 09 Okt 2017 10:29 | ||||
Letzte Änderung: | 25 Jul 2024 10:49 | ||||
PPN: | |||||
Referenten: | Adamy, Prof. Dr. J. ; Sendhoff, Prof. Dr. B. | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 4 Mai 2017 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Generic Topology Optimization Based on Local State Features. (deposited 29 Okt 2017 20:55)
- Generic topology optimization based on local state features. (deposited 09 Okt 2017 10:29) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |