Hessinger, Markus ; Pingsmann, Markus ; Perry, Joel C. ; Werthschützky, Roland ; Kupnik, Mario (2017)
Hybrid Position/Force Control of an Upper-Limb Exoskeleton for Assisted Drilling.
IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada (24.09.2017-28.09.2017)
doi: 10.1109/IROS.2017.8205997
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Exoskeletons are wearable robotic systems to assist the human body concerning power and accuracy. In this work, an upper limb exoskeleton with seven degrees of freedom provides haptic guidance to the user enhancing accuracy of the target position and constant thrust force during drilling tasks. Therefore, an inverse kinematics algorithm is introduced using selective damping, depending on joint velocities to minimize the end effector position error for redundant systems. Additionally, the method recognizes user intention with structurally integrated torque sensors for null space optimization. An implicit, hybrid force-position controller is implemented to perform position controlled drilling tasks with constant thrust force. The performance evaluation with the exoskeleton shows a maximum position error of 1.27 mm and steady-state thrust force response with a maximum overshoot of 1N.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2017 |
Autor(en): | Hessinger, Markus ; Pingsmann, Markus ; Perry, Joel C. ; Werthschützky, Roland ; Kupnik, Mario |
Art des Eintrags: | Bibliographie |
Titel: | Hybrid Position/Force Control of an Upper-Limb Exoskeleton for Assisted Drilling |
Sprache: | Englisch |
Publikationsjahr: | 4 Oktober 2017 |
Ort: | [Piscataway, NJ] |
Verlag: | IEEE |
Buchtitel: | 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) |
Veranstaltungstitel: | IEEE/RSJ International Conference on Intelligent Robots and Systems |
Veranstaltungsort: | Vancouver, BC, Canada |
Veranstaltungsdatum: | 24.09.2017-28.09.2017 |
DOI: | 10.1109/IROS.2017.8205997 |
Kurzbeschreibung (Abstract): | Exoskeletons are wearable robotic systems to assist the human body concerning power and accuracy. In this work, an upper limb exoskeleton with seven degrees of freedom provides haptic guidance to the user enhancing accuracy of the target position and constant thrust force during drilling tasks. Therefore, an inverse kinematics algorithm is introduced using selective damping, depending on joint velocities to minimize the end effector position error for redundant systems. Additionally, the method recognizes user intention with structurally integrated torque sensors for null space optimization. An implicit, hybrid force-position controller is implemented to perform position controlled drilling tasks with constant thrust force. The performance evaluation with the exoskeleton shows a maximum position error of 1.27 mm and steady-state thrust force response with a maximum overshoot of 1N. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektromechanische Konstruktionen (aufgelöst 18.12.2018) 18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik |
Hinterlegungsdatum: | 09 Okt 2017 12:51 |
Letzte Änderung: | 25 Jul 2024 09:35 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |