TU Darmstadt / ULB / TUbiblio

Decentralized Dynamic Data-Driven Monitoring of Atmospheric Dispersion Processes

Ritter, Tobias ; Euler, Juliane ; Ulbrich, Stefan ; Stryk, Oskar von (2016)
Decentralized Dynamic Data-Driven Monitoring of Atmospheric Dispersion Processes.
In: Procedia Computer Science, 80
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Online state and parameter estimation of atmospheric dispersion processes using multiple mobile sensor platforms is a prominent example of Dynamic Data-Driven Application Systems (DDDAS). Based on repeated predictions of a partial differential equation (PDE) model and measurements of the sensor network, estimates are updated and sensor trajectories are adapted to obtain more informative measurements. While most of the monitoring strategies require a central supercomputer, a novel decentralized plume monitoring approach is proposed in this paper. It combines the benefits of distributed approaches like scalability and robustness with the prediction ability of {PDE} process models. The strategy comprises model order reduction to keep calculations computationally tractable and a joint Kalman Filter with Covariance Intersection for incorporating measurements and propagating state information in the sensor network. Moreover, a cooperative vehicle controller is employed to guide the sensor vehicles to dynamically updated target locations that are based on the current estimated error variance.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Ritter, Tobias ; Euler, Juliane ; Ulbrich, Stefan ; Stryk, Oskar von
Art des Eintrags: Bibliographie
Titel: Decentralized Dynamic Data-Driven Monitoring of Atmospheric Dispersion Processes
Sprache: Deutsch
Publikationsjahr: 2016
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia Computer Science
Jahrgang/Volume einer Zeitschrift: 80
URL / URN: http://www.sciencedirect.com/science/article/pii/S1877050916...
Zugehörige Links:
Kurzbeschreibung (Abstract):

Online state and parameter estimation of atmospheric dispersion processes using multiple mobile sensor platforms is a prominent example of Dynamic Data-Driven Application Systems (DDDAS). Based on repeated predictions of a partial differential equation (PDE) model and measurements of the sensor network, estimates are updated and sensor trajectories are adapted to obtain more informative measurements. While most of the monitoring strategies require a central supercomputer, a novel decentralized plume monitoring approach is proposed in this paper. It combines the benefits of distributed approaches like scalability and robustness with the prediction ability of {PDE} process models. The strategy comprises model order reduction to keep calculations computationally tractable and a joint Kalman Filter with Covariance Intersection for incorporating measurements and propagating state information in the sensor network. Moreover, a cooperative vehicle controller is employed to guide the sensor vehicles to dynamically updated target locations that are based on the current estimated error variance.

Freie Schlagworte: Cooperative Vehicle Controller
Zusätzliche Informationen:

International Conference on Computational Science 2016, {ICCS} 2016, 6-8 June 2016, San Diego, California, {USA}

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Nonlinear Optimization
Hinterlegungsdatum: 08 Sep 2016 10:19
Letzte Änderung: 18 Mär 2019 10:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen