TU Darmstadt / ULB / TUbiblio

Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity

Zwiebler, M. ; Hamann-Borrero, J. E. ; Vafaee, M. ; Komissinskiy, P. ; Macke, S. ; Sutarto, R. ; He, F. ; Büchner, B. ; Sawatzky, G. A. ; Alff, L. ; Geck, J. (2015)
Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity.
In: New Journal of Physics, 17 (8)
doi: 10.1088/1367-2630/17/8/083046
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The analysis of x-ray reflectivity data from artificial heterostructures usually relies on the homogeneity of optical properties of the constituent materials. However, when the x-ray energy is tuned to an absorption edge, this homogeneity no longer exists. Within the same material, spatial regions containing elements at resonance will have optical properties very different from regions without resonating sites. In this situation, models assuming homogenous optical properties throughout the material can fail to describe the reflectivity adequately. As we show here, resonant soft x-ray reflectivity is sensitive to these variations, even though the wavelength is typically large as compared to the atomic disances over which the optical properties vary. We have therefore developed a scheme for analyzing resonant soft x-ray reflectivity data, which takes the atomic structure of a material into account by "slicing" it into atomic planes with characteristic optical properties. Using LaSrMnO4 as an example, we discuss both the theoretical and experimental implications of this approach. Our analysis not only allows to determine important structural information such as interface terminations and stacking of atomic layers, but also enables to extract depth-resolved spectroscopic information with atomic resolution, thus enhancing the capability of the technique to study emergent phenomena at surfaces and interfaces.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Zwiebler, M. ; Hamann-Borrero, J. E. ; Vafaee, M. ; Komissinskiy, P. ; Macke, S. ; Sutarto, R. ; He, F. ; Büchner, B. ; Sawatzky, G. A. ; Alff, L. ; Geck, J.
Art des Eintrags: Bibliographie
Titel: Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity
Sprache: Englisch
Publikationsjahr: 21 April 2015
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: New Journal of Physics
Jahrgang/Volume einer Zeitschrift: 17
(Heft-)Nummer: 8
DOI: 10.1088/1367-2630/17/8/083046
Zugehörige Links:
Kurzbeschreibung (Abstract):

The analysis of x-ray reflectivity data from artificial heterostructures usually relies on the homogeneity of optical properties of the constituent materials. However, when the x-ray energy is tuned to an absorption edge, this homogeneity no longer exists. Within the same material, spatial regions containing elements at resonance will have optical properties very different from regions without resonating sites. In this situation, models assuming homogenous optical properties throughout the material can fail to describe the reflectivity adequately. As we show here, resonant soft x-ray reflectivity is sensitive to these variations, even though the wavelength is typically large as compared to the atomic disances over which the optical properties vary. We have therefore developed a scheme for analyzing resonant soft x-ray reflectivity data, which takes the atomic structure of a material into account by "slicing" it into atomic planes with characteristic optical properties. Using LaSrMnO4 as an example, we discuss both the theoretical and experimental implications of this approach. Our analysis not only allows to determine important structural information such as interface terminations and stacking of atomic layers, but also enables to extract depth-resolved spectroscopic information with atomic resolution, thus enhancing the capability of the technique to study emergent phenomena at surfaces and interfaces.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
Hinterlegungsdatum: 21 Apr 2015 10:45
Letzte Änderung: 06 Dez 2023 08:52
PPN:
Sponsoren: M. Zwiebler, J. E. Hamann-Borrero and J. Geck gratefully acknowledge the support through the 18 DFG Emmy Noether Program (Grants GE-1647/2-1 and HA6470/1-1)., Experiments described in this paper were performed at the Canadian Light Source, which is funded by the CFI, NSERC, NRC, CIHR, the Government of Saskatchewan, WD Canada and the University of Saskatchewan.
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen