Greiner, Felix (2013)
Mikro-Nano-Integration für metallische Mikrosysteme mit vertikal integrierten Federelementen.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Mikro-Nano-Integration (MNI) ist ein skalenübergreifender Ansatz, um Nanomaterialien in Mikrosystemen zur Anwendung zu bringen. Die Nanotechnologie bietet vielfältige, vollständig neuartige Effekte sowie wesentlich verstärkt auftretende Effekte und stellt so eine Bereicherung für die Funktionalität von Mikrosystemen dar. Gleichzeitig liefert die Mikrotechnik eine sehr gezielte Anbindung der Nanomaterialien an die Systemtechnik, sodass sich aus geringen Mengen Nanomaterial große Effekte im MNI-System erzielen lassen. Daher ist zu erwarten, dass der Einsatz von Nanomaterialien in Mikrosystemen zukünftig stark anwachsen wird. Das Anwendungsspektrum der MNI-Systeme erstreckt sich bereits heute von einem sehr starken Sektor der Mikrosensorik, über Mikroaktorik, Mikroelektronik und Optik bis hin zu Chemie, Energie und biotechnischen Systemen. Eine umfangreiche Analyse zum Stand der Technik und zum Stand der Standardisierung verdeutlicht die Relevanz des Themenfelds.
Die Technologie zur Integration von Nanomaterialien weist eine Reihe an Herausforderungen auf, da die Integrationsschritte erheblichen Einfluss auf die Nanomaterialeigenschaften haben. In dieser Arbeit werden Verfahren zur Vor-Ort-Synthese hochgeordneter 1-D Nanomaterialien betrachtet, insbesondere galvanisch abgeschiedener metallischer Nanodrähte.
Sind diese Nanodrähte senkrecht stehend auf einem Trägersubstrat verankert, können sie als einseitig eingespannte Biegestäbe betrachtet und in alle lateralen Richtungen flexibel federnd gebogen werden. Diese Eigenschaft macht sich der hier untersuchte Ansatz zum Aufbau eines Inertialsensors zunutze. Fixiert man eine Inertialmasse am freien Ende des Biegestabs, ist diese in erster Näherung mit zwei lateralen translatorischen und zwei lateralen rotatorischen Freiheitsgraden aufgehängt. Somit lässt sich mit einer einzigen Inertialmasse die Beschleunigung in zwei lateralen Raumrichtungen bzw. die Drehrate aus der Ebene hinaus in Richtung der Biegestab-Hauptachse messen. Die Besonderheit dieses Ansatzes liegt in den geringen Abmessungen sowie der Skalierbarkeit des Konzepts. Im Gegensatz zum Stand der Technik bei Silizium-Inertialsensoren wird für Federelement und Masseelement deutlich weniger Chipfläche benötigt. Die Arbeit beschreibt die statische und dynamische Auslegung des Beschleunigungs- und des Drehratensensors einschließlich Stabilitätsbetrachtung des Biegestabs, der Übertragungsfunktionen und der Dimensionierung von der Mikroaktorik.
Ein weiterer Schwerpunkt liegt auf der Fertigung des Technologie-Demonstrators basierend auf den Verfahren UV-Lithographie mit anschließender Galvanoformung (UV LIGA) und Röntgen-Synchrotron-Lithographie mit anschließender Galvanoformung (Röntgen LIGA). Diese ermöglichen die Fertigung senkrecht stehender dünner Stäbe aus Metall, die als Federelemente dienen, in direkter Umgebung von Metallquadern, die als Inertialmassen fungieren. Mit Hilfe tiefenlithographischer Verfahren auf Basis von UV-Strahlung bzw. von Röntgen-Synchrotron-Strahlung lassen sich Photoresiste so mikrostrukturieren, dass Öffnungen mit Länge-zu-Durchmesser-Verhältnissen (Aspektverhältnissen) von bis zu 14,5 für UV-Strahlung und von bis zu 70 für Röntgen-Synchrotron-Strahlung entstehen. Die Kombination von Lithographieschritten in mehreren aufeinander folgenden Ebenen mit Metallabscheideschritten erlaubt die Vor-Ort-Synthese der Inertialsensor-Funktionselemente.
Im Rahmen dieser Arbeit entstehen so Technologie-Demonstatoren für einachsige, differentiell kapazitiv auswertbaren Beschleunigungssensoren mit Federelementen und Inertialmassen aus galvanisch abgeschiedenem Kupfer. Ihr Aufbau zu Sensor-Demonstratoren mündet in der Charakterisierung des statischen und dynamischen Übertragungsverhaltens. Der Übertragungsfaktor eines Sensor-Demonstrators beträgt 26,46 fF/g. Die Durchmesser der als Federelemente eingesetzten Stäbe lassen sich entsprechend der Auslegung gezielt zwischen 1,5 µm und 75 µm bei Längen zwischen 94 µm und 409 µm einstellen. Die Skalierbarkeit des Konzepts stellt jedoch in Aussicht, auch Submikro- und Nanodrähte mit Durchmessern kleiner als 1 µm einzusetzen.
Diese Arbeit stellt den internationalen Stand der Technik zur Mikro-Nano-Integration in einem neuen Umfang dar. Beispielhaft geht sie intensiv auf die Auslegung eines Multi-Inertialsensor-Technologie-Demonstrators mit nur einer Probemasse und nur einem Federelement ein und stellt so einen wegweisenden Ansatz für neuartige hochminiaturisierte Inertialsensoren vor. Auf technologischer Ebene geht die Arbeit auf neuartige Ansätze zur Optimierung der galvanischen Multiskalenfertigung ein und gibt detaillierte Parameter zur Reproduktion der gesamten Prozesskette an. Erstmals wird die Funktion eines Inertialsensors mit nur einem vor Ort synthetisierten Biegestab aus Metall als Federelement experimentell nachgewiesen.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2013 | ||||
Autor(en): | Greiner, Felix | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Mikro-Nano-Integration für metallische Mikrosysteme mit vertikal integrierten Federelementen | ||||
Sprache: | Deutsch | ||||
Referenten: | Schlaak, Prof. Helmut F. | ||||
Publikationsjahr: | 21 Oktober 2013 | ||||
Ort: | Darmstadt | ||||
Reihe: | Institut für Elektromechanische Konstruktionen | ||||
Band einer Reihe: | 30 | ||||
Datum der mündlichen Prüfung: | 27 September 2013 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/3640 | ||||
Zugehörige Links: | |||||
Kurzbeschreibung (Abstract): | Mikro-Nano-Integration (MNI) ist ein skalenübergreifender Ansatz, um Nanomaterialien in Mikrosystemen zur Anwendung zu bringen. Die Nanotechnologie bietet vielfältige, vollständig neuartige Effekte sowie wesentlich verstärkt auftretende Effekte und stellt so eine Bereicherung für die Funktionalität von Mikrosystemen dar. Gleichzeitig liefert die Mikrotechnik eine sehr gezielte Anbindung der Nanomaterialien an die Systemtechnik, sodass sich aus geringen Mengen Nanomaterial große Effekte im MNI-System erzielen lassen. Daher ist zu erwarten, dass der Einsatz von Nanomaterialien in Mikrosystemen zukünftig stark anwachsen wird. Das Anwendungsspektrum der MNI-Systeme erstreckt sich bereits heute von einem sehr starken Sektor der Mikrosensorik, über Mikroaktorik, Mikroelektronik und Optik bis hin zu Chemie, Energie und biotechnischen Systemen. Eine umfangreiche Analyse zum Stand der Technik und zum Stand der Standardisierung verdeutlicht die Relevanz des Themenfelds. Die Technologie zur Integration von Nanomaterialien weist eine Reihe an Herausforderungen auf, da die Integrationsschritte erheblichen Einfluss auf die Nanomaterialeigenschaften haben. In dieser Arbeit werden Verfahren zur Vor-Ort-Synthese hochgeordneter 1-D Nanomaterialien betrachtet, insbesondere galvanisch abgeschiedener metallischer Nanodrähte. Sind diese Nanodrähte senkrecht stehend auf einem Trägersubstrat verankert, können sie als einseitig eingespannte Biegestäbe betrachtet und in alle lateralen Richtungen flexibel federnd gebogen werden. Diese Eigenschaft macht sich der hier untersuchte Ansatz zum Aufbau eines Inertialsensors zunutze. Fixiert man eine Inertialmasse am freien Ende des Biegestabs, ist diese in erster Näherung mit zwei lateralen translatorischen und zwei lateralen rotatorischen Freiheitsgraden aufgehängt. Somit lässt sich mit einer einzigen Inertialmasse die Beschleunigung in zwei lateralen Raumrichtungen bzw. die Drehrate aus der Ebene hinaus in Richtung der Biegestab-Hauptachse messen. Die Besonderheit dieses Ansatzes liegt in den geringen Abmessungen sowie der Skalierbarkeit des Konzepts. Im Gegensatz zum Stand der Technik bei Silizium-Inertialsensoren wird für Federelement und Masseelement deutlich weniger Chipfläche benötigt. Die Arbeit beschreibt die statische und dynamische Auslegung des Beschleunigungs- und des Drehratensensors einschließlich Stabilitätsbetrachtung des Biegestabs, der Übertragungsfunktionen und der Dimensionierung von der Mikroaktorik. Ein weiterer Schwerpunkt liegt auf der Fertigung des Technologie-Demonstrators basierend auf den Verfahren UV-Lithographie mit anschließender Galvanoformung (UV LIGA) und Röntgen-Synchrotron-Lithographie mit anschließender Galvanoformung (Röntgen LIGA). Diese ermöglichen die Fertigung senkrecht stehender dünner Stäbe aus Metall, die als Federelemente dienen, in direkter Umgebung von Metallquadern, die als Inertialmassen fungieren. Mit Hilfe tiefenlithographischer Verfahren auf Basis von UV-Strahlung bzw. von Röntgen-Synchrotron-Strahlung lassen sich Photoresiste so mikrostrukturieren, dass Öffnungen mit Länge-zu-Durchmesser-Verhältnissen (Aspektverhältnissen) von bis zu 14,5 für UV-Strahlung und von bis zu 70 für Röntgen-Synchrotron-Strahlung entstehen. Die Kombination von Lithographieschritten in mehreren aufeinander folgenden Ebenen mit Metallabscheideschritten erlaubt die Vor-Ort-Synthese der Inertialsensor-Funktionselemente. Im Rahmen dieser Arbeit entstehen so Technologie-Demonstatoren für einachsige, differentiell kapazitiv auswertbaren Beschleunigungssensoren mit Federelementen und Inertialmassen aus galvanisch abgeschiedenem Kupfer. Ihr Aufbau zu Sensor-Demonstratoren mündet in der Charakterisierung des statischen und dynamischen Übertragungsverhaltens. Der Übertragungsfaktor eines Sensor-Demonstrators beträgt 26,46 fF/g. Die Durchmesser der als Federelemente eingesetzten Stäbe lassen sich entsprechend der Auslegung gezielt zwischen 1,5 µm und 75 µm bei Längen zwischen 94 µm und 409 µm einstellen. Die Skalierbarkeit des Konzepts stellt jedoch in Aussicht, auch Submikro- und Nanodrähte mit Durchmessern kleiner als 1 µm einzusetzen. Diese Arbeit stellt den internationalen Stand der Technik zur Mikro-Nano-Integration in einem neuen Umfang dar. Beispielhaft geht sie intensiv auf die Auslegung eines Multi-Inertialsensor-Technologie-Demonstrators mit nur einer Probemasse und nur einem Federelement ein und stellt so einen wegweisenden Ansatz für neuartige hochminiaturisierte Inertialsensoren vor. Auf technologischer Ebene geht die Arbeit auf neuartige Ansätze zur Optimierung der galvanischen Multiskalenfertigung ein und gibt detaillierte Parameter zur Reproduktion der gesamten Prozesskette an. Erstmals wird die Funktion eines Inertialsensors mit nur einem vor Ort synthetisierten Biegestab aus Metall als Federelement experimentell nachgewiesen. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-36406 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektromechanische Konstruktionen (aufgelöst 18.12.2018) 18 Fachbereich Elektrotechnik und Informationstechnik > Mikrotechnik und Elektromechanische Systeme |
||||
Hinterlegungsdatum: | 27 Okt 2013 20:55 | ||||
Letzte Änderung: | 27 Okt 2013 20:55 | ||||
PPN: | |||||
Referenten: | Schlaak, Prof. Helmut F. | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 27 September 2013 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |