TU Darmstadt / ULB / TUbiblio

Atomistic mechanism of shock-induced void collapse in nanoporous metals

Erhart, P. ; Bringa, E. M. ; Kumar, M. ; Albe, K. (2005)
Atomistic mechanism of shock-induced void collapse in nanoporous metals.
In: Phys. Rev. B, 72 (5)
doi: 10.1103/PhysRevB.72.052104
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We have investigated the microstructural changes in ductile porous metals during high pressure-high strain rate loading employing atomistic simulations and explored their relation to recent experiments on polycrystalline copper samples. Molecular-dynamics simulations of shocks in porous, single-crystal samples show the formation of nanograins due to localized massive plastic deformation induced by the presence of voids. In the process of grain formation the individual voids serve as dislocation sources. The efficiency of these sources is further enhanced by their collective interaction which eventually leads to very high dislocation densities. In agreement with experimental studies, the simulations display a temporal delay of the particle velocity in comparison to perfectly crystalline samples. This delay increases with porosity. Our results point towards the importance of void-void interactions and collective effects during dynamic loading of porous materials.

Typ des Eintrags: Artikel
Erschienen: 2005
Autor(en): Erhart, P. ; Bringa, E. M. ; Kumar, M. ; Albe, K.
Art des Eintrags: Bibliographie
Titel: Atomistic mechanism of shock-induced void collapse in nanoporous metals
Sprache: Englisch
Publikationsjahr: 5 August 2005
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Phys. Rev. B
Jahrgang/Volume einer Zeitschrift: 72
(Heft-)Nummer: 5
DOI: 10.1103/PhysRevB.72.052104
URL / URN: http://prb.aps.org/abstract/PRB/v72/i5/e052104
Kurzbeschreibung (Abstract):

We have investigated the microstructural changes in ductile porous metals during high pressure-high strain rate loading employing atomistic simulations and explored their relation to recent experiments on polycrystalline copper samples. Molecular-dynamics simulations of shocks in porous, single-crystal samples show the formation of nanograins due to localized massive plastic deformation induced by the presence of voids. In the process of grain formation the individual voids serve as dislocation sources. The efficiency of these sources is further enhanced by their collective interaction which eventually leads to very high dislocation densities. In agreement with experimental studies, the simulations display a temporal delay of the particle velocity in comparison to perfectly crystalline samples. This delay increases with porosity. Our results point towards the importance of void-void interactions and collective effects during dynamic loading of porous materials.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 28 Feb 2012 15:00
Letzte Änderung: 31 Okt 2016 10:11
PPN:
Sponsoren: This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48., We would like to thank the ASCI-DOM program for partial financial support.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen