Reinl, Christian (2010)
Trajektorien- und Aufgabenplanung kooperierender Fahrzeuge: Diskret-kontinuierliche Modellierung und Optimierung.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Im Kern der Aufgabenzuweisung und Trajektorienplanung für kooperierende Fahrzeuge stehen schwer entscheidbare Fragestellungen. Verschiedenartige Aufgaben, deren Erfüllung maßgeblich von physikalischer Bewegungsdynamik abhängt, führen in der Systemanalyse und in der Entscheidungsfindung zu einer engen Kopplung diskreter Struktur und kontinuierlicher Dynamik. In praktischen Anwendungen werden bislang Heuristiken für sehr spezifische Problemstellungen eingesetzt, oder man berücksichtigt die nichtlinearen bewegungsdynamischen Eigenschaften nur sehr grob in den Planungsmethoden. Eine Verallgemeinerung und Übertragung bestehender Ansätze auf andere Fahrzeugklassen und Aufgabenstellungen ist deshalb meist nur eingeschränkt realisierbar. In einem beständig wachsenden Feld neuer Anwendungen kooperativer, autonomer Mehrfahrzeugsysteme kommt der Entwicklung einer möglichst breit anwendbaren Methodik eine wichtige Bedeutung zu. Ein entsprechendes Konzept muss die wesentlichen Systemmerkmale in der Modellierung und Optimalplanung zur Anwendung in der Systemauslegung und der Reglerentwicklung berücksichtigen. In der vorliegenden Arbeit wird dazu ein in sich konsistentes Modellierungs-, Approximations- und Optimierungskonzept vorgestellt, das auf der Theorie hybrider dynamischer Systeme, der mathematischen nichtlinearen gemischt-ganzzahligen Optimalsteuerung und auf modellprädiktive Methoden der Regelungstheorie aufbaut. Mit Hilfe hierarchischer hybrider Zustandsautomaten wird die enge Kopplung diskreter und kontinuierlicher Systemdynamik im Modell erfasst und über geeignete Transformationen der mathematischen Optimierung zugänglich gemacht. Dabei werden insbesondere lineare Approximationen betrachtet, die das Potential günstiger Rechenzeiten und globaler Optimalität für die Ersatzmodelle besitzen. Die Lösung der entstehenden diskret-kontinuierlichen Optimierungsprobleme erlaubt für viele Fragestellungen kooperativen Verhaltens eine effizient berechenbare Näherungslösung und kann in der vorliegenden Form in Spezialfällen bereits zu einer echtzeitfähigen Regelung der Aufgabenzuweisung verwendet werden. Für repräsentative Benchmarkszenarien und neuartige Fragestellungen -- wie zur Aufrechterhaltung drahtloser Kommunikation zwischen Fahrzeugen -- werden numerische Ergebnisse präsentiert, welche die Leistungsfähigkeit der Konzepte demonstrieren und deren Grenzen ausloten. Mit Hilfe der vorliegenden Arbeit ist es möglich, Abschätzungen zur Systemauslegung und zur Entwicklung heuristischer Reglerkonzepte für das Kernproblem kooperativer Mobilität zu berechnen, unter Berücksichtigung physikalischer Bewegungsdynamik und der charakteristischen diskret-kontinuierlichen Kopplung von Systemzuständen.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2010 | ||||
Autor(en): | Reinl, Christian | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Trajektorien- und Aufgabenplanung kooperierender Fahrzeuge: Diskret-kontinuierliche Modellierung und Optimierung | ||||
Sprache: | Deutsch | ||||
Referenten: | von Stryk, Prof. Dr. Oskar ; Stursberg, Prof. Dr.- Olaf | ||||
Publikationsjahr: | 17 September 2010 | ||||
Datum der mündlichen Prüfung: | 25 März 2010 | ||||
URL / URN: | urn:nbn:de:tuda-tuprints-22856 | ||||
Zugehörige Links: | |||||
Kurzbeschreibung (Abstract): | Im Kern der Aufgabenzuweisung und Trajektorienplanung für kooperierende Fahrzeuge stehen schwer entscheidbare Fragestellungen. Verschiedenartige Aufgaben, deren Erfüllung maßgeblich von physikalischer Bewegungsdynamik abhängt, führen in der Systemanalyse und in der Entscheidungsfindung zu einer engen Kopplung diskreter Struktur und kontinuierlicher Dynamik. In praktischen Anwendungen werden bislang Heuristiken für sehr spezifische Problemstellungen eingesetzt, oder man berücksichtigt die nichtlinearen bewegungsdynamischen Eigenschaften nur sehr grob in den Planungsmethoden. Eine Verallgemeinerung und Übertragung bestehender Ansätze auf andere Fahrzeugklassen und Aufgabenstellungen ist deshalb meist nur eingeschränkt realisierbar. In einem beständig wachsenden Feld neuer Anwendungen kooperativer, autonomer Mehrfahrzeugsysteme kommt der Entwicklung einer möglichst breit anwendbaren Methodik eine wichtige Bedeutung zu. Ein entsprechendes Konzept muss die wesentlichen Systemmerkmale in der Modellierung und Optimalplanung zur Anwendung in der Systemauslegung und der Reglerentwicklung berücksichtigen. In der vorliegenden Arbeit wird dazu ein in sich konsistentes Modellierungs-, Approximations- und Optimierungskonzept vorgestellt, das auf der Theorie hybrider dynamischer Systeme, der mathematischen nichtlinearen gemischt-ganzzahligen Optimalsteuerung und auf modellprädiktive Methoden der Regelungstheorie aufbaut. Mit Hilfe hierarchischer hybrider Zustandsautomaten wird die enge Kopplung diskreter und kontinuierlicher Systemdynamik im Modell erfasst und über geeignete Transformationen der mathematischen Optimierung zugänglich gemacht. Dabei werden insbesondere lineare Approximationen betrachtet, die das Potential günstiger Rechenzeiten und globaler Optimalität für die Ersatzmodelle besitzen. Die Lösung der entstehenden diskret-kontinuierlichen Optimierungsprobleme erlaubt für viele Fragestellungen kooperativen Verhaltens eine effizient berechenbare Näherungslösung und kann in der vorliegenden Form in Spezialfällen bereits zu einer echtzeitfähigen Regelung der Aufgabenzuweisung verwendet werden. Für repräsentative Benchmarkszenarien und neuartige Fragestellungen -- wie zur Aufrechterhaltung drahtloser Kommunikation zwischen Fahrzeugen -- werden numerische Ergebnisse präsentiert, welche die Leistungsfähigkeit der Konzepte demonstrieren und deren Grenzen ausloten. Mit Hilfe der vorliegenden Arbeit ist es möglich, Abschätzungen zur Systemauslegung und zur Entwicklung heuristischer Reglerkonzepte für das Kernproblem kooperativer Mobilität zu berechnen, unter Berücksichtigung physikalischer Bewegungsdynamik und der charakteristischen diskret-kontinuierlichen Kopplung von Systemzuständen. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Zusätzliche Informationen: | Druckausg.: Düsseldorf : VDI-Verlag, 2010. ISBN 978-3-18-517708-8 (Fortschritt-Berichte VDI : Reihe 8, Mess-, Steuerungs- und Regelungstechnik ; Nr. 1177) |
||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
||||
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Simulation, Systemoptimierung und Robotik Zentrale Einrichtungen Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) Exzellenzinitiative > Graduiertenschulen |
||||
Hinterlegungsdatum: | 27 Sep 2010 11:19 | ||||
Letzte Änderung: | 22 Sep 2016 08:05 | ||||
PPN: | |||||
Referenten: | von Stryk, Prof. Dr. Oskar ; Stursberg, Prof. Dr.- Olaf | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 25 März 2010 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |