TU Darmstadt / ULB / TUbiblio

Identification methods for experimental nonlinear modelling of combustion engines

Schreiber, Alexander ; Isermann, Rolf (2007)
Identification methods for experimental nonlinear modelling of combustion engines.
In: 5th IFAC Symposium on Advances in Automotive Control, 40 (10)
doi: 10.3182/20070820-3-US-2918.00048
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The optimized control of combustion engines with regard to minimized fuel consumption and emissions requires nonlinear models. Because of an increase of control inputs, like fuel mass flow, injection angle, exhaust gas recirculation flow and several outputs like torque, nitrogen oxides (NOx), hydrocarbons (HC) and particulates the classical grid-based measurement techniques take too long time and do not include dynamics. Therefore different measurement strategies for the stationary and dynamic behavior are described, like Design of Experiments (DoE) and use of suitable neural networks and Pseudo-Random-Binary-Signals (PRBS). As the structure of the models is not precisely known a-priori, nonlinear identification methods in form of special versions of neural networks are good candidates. Therefore, it will be shown how with special amplitude-modulated pseudo random binary signals (APRBS), simultaneous excitation of several input signals, nonlinear multi-input multi-output models can be obtained in relatively short time.

Typ des Eintrags: Artikel
Erschienen: 2007
Autor(en): Schreiber, Alexander ; Isermann, Rolf
Art des Eintrags: Bibliographie
Titel: Identification methods for experimental nonlinear modelling of combustion engines
Sprache: Englisch
Publikationsjahr: 2007
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: 5th IFAC Symposium on Advances in Automotive Control
Jahrgang/Volume einer Zeitschrift: 40
(Heft-)Nummer: 10
DOI: 10.3182/20070820-3-US-2918.00048
Zugehörige Links:
Kurzbeschreibung (Abstract):

The optimized control of combustion engines with regard to minimized fuel consumption and emissions requires nonlinear models. Because of an increase of control inputs, like fuel mass flow, injection angle, exhaust gas recirculation flow and several outputs like torque, nitrogen oxides (NOx), hydrocarbons (HC) and particulates the classical grid-based measurement techniques take too long time and do not include dynamics. Therefore different measurement strategies for the stationary and dynamic behavior are described, like Design of Experiments (DoE) and use of suitable neural networks and Pseudo-Random-Binary-Signals (PRBS). As the structure of the models is not precisely known a-priori, nonlinear identification methods in form of special versions of neural networks are good candidates. Therefore, it will be shown how with special amplitude-modulated pseudo random binary signals (APRBS), simultaneous excitation of several input signals, nonlinear multi-input multi-output models can be obtained in relatively short time.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungstechnik und Prozessautomatisierung
Hinterlegungsdatum: 20 Nov 2008 08:27
Letzte Änderung: 06 Nov 2024 09:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen