TU Darmstadt / ULB / TUbiblio

Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees

Schurig, Roland ; Himmel, Andreas ; Findeisen, Rolf (2024)
Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees.
22nd European Control Conference. Stockholm, Sweden (25.06.2024-28.06.2024)
doi: 10.23919/ECC64448.2024.10591254
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We address the challenge of dimension reduction in the discrete-time optimal control problem which is solved repeatedly online within the framework of model predictive control. Our study demonstrates that a reduced-order approach, aimed at identifying a suboptimal solution within a low-dimensional subspace, retains the stability and recursive feasibility characteristics of the original problem. We present a necessary and sufficient condition for ensuring initial feasibility, which is seamlessly integrated into the subspace design process. Additionally, we employ techniques from optimization on Riemannian manifolds to develop a subspace that efficiently represents a collection of pre-specified high-dimensional data points, all while adhering to the initial admissibility constraint.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Schurig, Roland ; Himmel, Andreas ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees
Sprache: Englisch
Publikationsjahr: 24 Juli 2024
Verlag: IEEE
Buchtitel: 2024 European Control Conference (ECC 2024)
Veranstaltungstitel: 22nd European Control Conference
Veranstaltungsort: Stockholm, Sweden
Veranstaltungsdatum: 25.06.2024-28.06.2024
DOI: 10.23919/ECC64448.2024.10591254
Kurzbeschreibung (Abstract):

We address the challenge of dimension reduction in the discrete-time optimal control problem which is solved repeatedly online within the framework of model predictive control. Our study demonstrates that a reduced-order approach, aimed at identifying a suboptimal solution within a low-dimensional subspace, retains the stability and recursive feasibility characteristics of the original problem. We present a necessary and sufficient condition for ensuring initial feasibility, which is seamlessly integrated into the subspace design process. Additionally, we employ techniques from optimization on Riemannian manifolds to develop a subspace that efficiently represents a collection of pre-specified high-dimensional data points, all while adhering to the initial admissibility constraint.

Freie Schlagworte: emergenCITY_CPS, emergenCITY
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 17 Dez 2024 12:47
Letzte Änderung: 17 Dez 2024 12:51
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen