TU Darmstadt / ULB / TUbiblio

Comparison of Empirical and Reinforcement Learning (RL)-Based Control Based on Proximal Policy Optimization (PPO) for Walking Assistance: Does AI Always Win?

Drewing, Nadine ; Ahmadi, Arjang ; Xiong, Xiaofeng ; Sharbafi, Maziar Ahmad (2024)
Comparison of Empirical and Reinforcement Learning (RL)-Based Control Based on Proximal Policy Optimization (PPO) for Walking Assistance: Does AI Always Win?
In: Biomimetics, 2024, 9 (11)
doi: 10.26083/tuprints-00028848
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The use of wearable assistive devices is growing in both industrial and medical fields. Combining human expertise and artificial intelligence (AI), e.g., in human-in-the-loop-optimization, is gaining popularity for adapting assistance to individuals. Amidst prevailing assertions that AI could surpass human capabilities in customizing every facet of support for human needs, our study serves as an initial step towards such claims within the context of human walking assistance. We investigated the efficacy of the Biarticular Thigh Exosuit, a device designed to aid human locomotion by mimicking the action of the hamstrings and rectus femoris muscles using Serial Elastic Actuators. Two control strategies were tested: an empirical controller based on human gait knowledge and empirical data and a control optimized using Reinforcement Learning (RL) on a neuromuscular model. The performance results of these controllers were assessed by comparing muscle activation in two assisted and two unassisted walking modes. Results showed that both controllers reduced hamstring muscle activation and improved the preferred walking speed, with the empirical controller also decreasing gastrocnemius muscle activity. However, the RL-based controller increased muscle activity in the vastus and rectus femoris, indicating that RL-based enhancements may not always improve assistance without solid empirical support.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Drewing, Nadine ; Ahmadi, Arjang ; Xiong, Xiaofeng ; Sharbafi, Maziar Ahmad
Art des Eintrags: Zweitveröffentlichung
Titel: Comparison of Empirical and Reinforcement Learning (RL)-Based Control Based on Proximal Policy Optimization (PPO) for Walking Assistance: Does AI Always Win?
Sprache: Englisch
Publikationsjahr: 10 Dezember 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: November 2024
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Biomimetics
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 11
Kollation: 19 Seiten
DOI: 10.26083/tuprints-00028848
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28848
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The use of wearable assistive devices is growing in both industrial and medical fields. Combining human expertise and artificial intelligence (AI), e.g., in human-in-the-loop-optimization, is gaining popularity for adapting assistance to individuals. Amidst prevailing assertions that AI could surpass human capabilities in customizing every facet of support for human needs, our study serves as an initial step towards such claims within the context of human walking assistance. We investigated the efficacy of the Biarticular Thigh Exosuit, a device designed to aid human locomotion by mimicking the action of the hamstrings and rectus femoris muscles using Serial Elastic Actuators. Two control strategies were tested: an empirical controller based on human gait knowledge and empirical data and a control optimized using Reinforcement Learning (RL) on a neuromuscular model. The performance results of these controllers were assessed by comparing muscle activation in two assisted and two unassisted walking modes. Results showed that both controllers reduced hamstring muscle activation and improved the preferred walking speed, with the empirical controller also decreasing gastrocnemius muscle activity. However, the RL-based controller increased muscle activity in the vastus and rectus femoris, indicating that RL-based enhancements may not always improve assistance without solid empirical support.

Freie Schlagworte: wearable assistive device, exosuit, exo control, reinforcement learning, PPO
ID-Nummer: Artikel-ID: 665
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-288488
Zusätzliche Informationen:

This article belongs to the Special Issue: Biologically Inspired Design and Control of Robots: Second Edition

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
700 Künste und Unterhaltung > 796 Sport
Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft
03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft > Sportbiomechanik
Hinterlegungsdatum: 10 Dez 2024 13:35
Letzte Änderung: 21 Dez 2024 18:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen