Hirt, Sebastian ; Pfefferkorn, Maik ; Mesbah, Ali ; Findeisen, Rolf (2024)
Stability-informed Bayesian Optimization for MPC Cost Function Learning.
In: IFAC-PapersOnLine, 58 (18)
doi: 10.1016/j.ifacol.2024.09.032
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Designing predictive controllers towards optimal closed-loop performance while maintaining safety and stability is challenging. This work explores closed-loop learning for predictive control parameters under imperfect information while considering closed-loop stability. We employ constrained Bayesian optimization to learn a model predictive controller's (MPC) cost function parametrized as a feedforward neural network, optimizing closed-loop behavior as well as minimizing model-plant mismatch. Doing so offers a high degree of freedom and, thus, the opportunity for efficient and global optimization towards the desired and optimal closed-loop behavior. We extend this framework by stability constraints on the learned controller parameters, exploiting the optimal value function of the underlying MPC as a Lyapunov candidate. The effectiveness of the proposed approach is underlined in simulations, highlighting its performance and safety capabilities.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Hirt, Sebastian ; Pfefferkorn, Maik ; Mesbah, Ali ; Findeisen, Rolf |
Art des Eintrags: | Bibliographie |
Titel: | Stability-informed Bayesian Optimization for MPC Cost Function Learning |
Sprache: | Englisch |
Publikationsjahr: | 2024 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IFAC-PapersOnLine |
Jahrgang/Volume einer Zeitschrift: | 58 |
(Heft-)Nummer: | 18 |
DOI: | 10.1016/j.ifacol.2024.09.032 |
Kurzbeschreibung (Abstract): | Designing predictive controllers towards optimal closed-loop performance while maintaining safety and stability is challenging. This work explores closed-loop learning for predictive control parameters under imperfect information while considering closed-loop stability. We employ constrained Bayesian optimization to learn a model predictive controller's (MPC) cost function parametrized as a feedforward neural network, optimizing closed-loop behavior as well as minimizing model-plant mismatch. Doing so offers a high degree of freedom and, thus, the opportunity for efficient and global optimization towards the desired and optimal closed-loop behavior. We extend this framework by stability constraints on the learned controller parameters, exploiting the optimal value function of the underlying MPC as a Lyapunov candidate. The effectiveness of the proposed approach is underlined in simulations, highlighting its performance and safety capabilities. |
Zusätzliche Informationen: | 8th IFAC Conference on Nonlinear Model Predictive Control NMPC 2024, Kyoto, Japan, 21.08.2024-24.08.2024 |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS) DFG-Graduiertenkollegs DFG-Graduiertenkollegs > Graduiertenkolleg 2761 LokoAssist – Nahtlose Integration von Assistenzsystemen für die natürliche Lokomotion des Menschen |
Hinterlegungsdatum: | 06 Nov 2024 15:33 |
Letzte Änderung: | 06 Nov 2024 15:33 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |