TU Darmstadt / ULB / TUbiblio

Stability-informed Bayesian Optimization for MPC Cost Function Learning

Hirt, Sebastian ; Pfefferkorn, Maik ; Mesbah, Ali ; Findeisen, Rolf (2024)
Stability-informed Bayesian Optimization for MPC Cost Function Learning.
In: IFAC-PapersOnLine, 58 (18)
doi: 10.1016/j.ifacol.2024.09.032
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Designing predictive controllers towards optimal closed-loop performance while maintaining safety and stability is challenging. This work explores closed-loop learning for predictive control parameters under imperfect information while considering closed-loop stability. We employ constrained Bayesian optimization to learn a model predictive controller's (MPC) cost function parametrized as a feedforward neural network, optimizing closed-loop behavior as well as minimizing model-plant mismatch. Doing so offers a high degree of freedom and, thus, the opportunity for efficient and global optimization towards the desired and optimal closed-loop behavior. We extend this framework by stability constraints on the learned controller parameters, exploiting the optimal value function of the underlying MPC as a Lyapunov candidate. The effectiveness of the proposed approach is underlined in simulations, highlighting its performance and safety capabilities.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Hirt, Sebastian ; Pfefferkorn, Maik ; Mesbah, Ali ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Stability-informed Bayesian Optimization for MPC Cost Function Learning
Sprache: Englisch
Publikationsjahr: 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IFAC-PapersOnLine
Jahrgang/Volume einer Zeitschrift: 58
(Heft-)Nummer: 18
DOI: 10.1016/j.ifacol.2024.09.032
Kurzbeschreibung (Abstract):

Designing predictive controllers towards optimal closed-loop performance while maintaining safety and stability is challenging. This work explores closed-loop learning for predictive control parameters under imperfect information while considering closed-loop stability. We employ constrained Bayesian optimization to learn a model predictive controller's (MPC) cost function parametrized as a feedforward neural network, optimizing closed-loop behavior as well as minimizing model-plant mismatch. Doing so offers a high degree of freedom and, thus, the opportunity for efficient and global optimization towards the desired and optimal closed-loop behavior. We extend this framework by stability constraints on the learned controller parameters, exploiting the optimal value function of the underlying MPC as a Lyapunov candidate. The effectiveness of the proposed approach is underlined in simulations, highlighting its performance and safety capabilities.

Zusätzliche Informationen:

8th IFAC Conference on Nonlinear Model Predictive Control NMPC 2024, Kyoto, Japan, 21.08.2024-24.08.2024

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 2761 LokoAssist – Nahtlose Integration von Assistenzsystemen für die natürliche Lokomotion des Menschen
Hinterlegungsdatum: 06 Nov 2024 15:33
Letzte Änderung: 06 Nov 2024 15:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen