TU Darmstadt / ULB / TUbiblio

Neural Horizon Model Predictive Control - Increasing Computational Efficiency with Neural Networks

Alsmeier, Hendrik ; Savchenko, Anton ; Findeisen, Rolf (2024)
Neural Horizon Model Predictive Control - Increasing Computational Efficiency with Neural Networks.
2024 American Control Conference (ACC). Toronto, Canada (08.07.2024 - 12.07.2024)
doi: 10.23919/ACC60939.2024.10644452
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The expansion in automation of increasingly fast applications and low-power edge devices poses a particular challenge for optimization based control algorithms, like model predictive control. Our proposed machine-learning supported approach addresses this by utilizing a feed-forward neural net-work to reduce the computation load of the online-optimization. We propose approximating part of the problem horizon, while maintaining safety guarantees - constraint satisfaction - via the remaining optimization part of the controller. The approach is validated in simulation, demonstrating an improvement in computational efficiency, while maintaining guarantees and near-optimal performance. The proposed MPC scheme can be applied to a wide range of applications, including those requiring a rapid control response, such as robotics and embedded applications with limited computational resources.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Alsmeier, Hendrik ; Savchenko, Anton ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Neural Horizon Model Predictive Control - Increasing Computational Efficiency with Neural Networks
Sprache: Englisch
Publikationsjahr: 5 September 2024
Verlag: IEEE
Buchtitel: 2024 American Control Conference
Veranstaltungstitel: 2024 American Control Conference (ACC)
Veranstaltungsort: Toronto, Canada
Veranstaltungsdatum: 08.07.2024 - 12.07.2024
DOI: 10.23919/ACC60939.2024.10644452
Kurzbeschreibung (Abstract):

The expansion in automation of increasingly fast applications and low-power edge devices poses a particular challenge for optimization based control algorithms, like model predictive control. Our proposed machine-learning supported approach addresses this by utilizing a feed-forward neural net-work to reduce the computation load of the online-optimization. We propose approximating part of the problem horizon, while maintaining safety guarantees - constraint satisfaction - via the remaining optimization part of the controller. The approach is validated in simulation, demonstrating an improvement in computational efficiency, while maintaining guarantees and near-optimal performance. The proposed MPC scheme can be applied to a wide range of applications, including those requiring a rapid control response, such as robotics and embedded applications with limited computational resources.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 06 Nov 2024 13:06
Letzte Änderung: 06 Nov 2024 13:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen