Alsmeier, Hendrik ; Savchenko, Anton ; Findeisen, Rolf (2024)
Neural Horizon Model Predictive Control - Increasing Computational Efficiency with Neural Networks.
2024 American Control Conference (ACC). Toronto, Canada (08.07.2024 - 12.07.2024)
doi: 10.23919/ACC60939.2024.10644452
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
The expansion in automation of increasingly fast applications and low-power edge devices poses a particular challenge for optimization based control algorithms, like model predictive control. Our proposed machine-learning supported approach addresses this by utilizing a feed-forward neural net-work to reduce the computation load of the online-optimization. We propose approximating part of the problem horizon, while maintaining safety guarantees - constraint satisfaction - via the remaining optimization part of the controller. The approach is validated in simulation, demonstrating an improvement in computational efficiency, while maintaining guarantees and near-optimal performance. The proposed MPC scheme can be applied to a wide range of applications, including those requiring a rapid control response, such as robotics and embedded applications with limited computational resources.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Alsmeier, Hendrik ; Savchenko, Anton ; Findeisen, Rolf |
Art des Eintrags: | Bibliographie |
Titel: | Neural Horizon Model Predictive Control - Increasing Computational Efficiency with Neural Networks |
Sprache: | Englisch |
Publikationsjahr: | 5 September 2024 |
Verlag: | IEEE |
Buchtitel: | 2024 American Control Conference |
Veranstaltungstitel: | 2024 American Control Conference (ACC) |
Veranstaltungsort: | Toronto, Canada |
Veranstaltungsdatum: | 08.07.2024 - 12.07.2024 |
DOI: | 10.23919/ACC60939.2024.10644452 |
Kurzbeschreibung (Abstract): | The expansion in automation of increasingly fast applications and low-power edge devices poses a particular challenge for optimization based control algorithms, like model predictive control. Our proposed machine-learning supported approach addresses this by utilizing a feed-forward neural net-work to reduce the computation load of the online-optimization. We propose approximating part of the problem horizon, while maintaining safety guarantees - constraint satisfaction - via the remaining optimization part of the controller. The approach is validated in simulation, demonstrating an improvement in computational efficiency, while maintaining guarantees and near-optimal performance. The proposed MPC scheme can be applied to a wide range of applications, including those requiring a rapid control response, such as robotics and embedded applications with limited computational resources. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS) |
Hinterlegungsdatum: | 06 Nov 2024 13:06 |
Letzte Änderung: | 06 Nov 2024 13:06 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |