TU Darmstadt / ULB / TUbiblio

Cycle Life Prediction for Lithium-ion Batteries: Machine Learning and More

Schaeffer, Joachim ; Galuppini, Giacomo ; Rhyu, Jinwook ; Asinger, Patrick A. ; Droop, Robin ; Findeisen, Rolf ; Braatz, Richard D. (2024)
Cycle Life Prediction for Lithium-ion Batteries: Machine Learning and More.
2024 American Control Conference (ACC). Toronto, Canada (08.07.2024 - 12.07.2024)
doi: 10.23919/ACC60939.2024.10644790
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Batteries are dynamic systems with complicated nonlinear aging, highly dependent on cell design, chemistry, manufacturing, and operational conditions. Prediction of battery cycle life and estimation of aging states is important to accelerate battery R&D, testing, and to further the understanding of how batteries degrade. Beyond testing, battery management systems rely on real-time models and onboard diagnostics and prognostics for safe operation. Estimating the state of health and remaining useful life of a battery is important to optimize performance and use resources optimally. This tutorial begins with an overview of first-principles, machine learning, and hybrid battery models. Then, a typical pipeline for the development of interpretable, machine learning models is explained and showcased for cycle life prediction from laboratory testing data. We highlight the challenges of machine learning models, motivating the incorporation of physics in hybrid modeling approaches, which are needed to decipher the aging trajectory of batteries but require more data and further work on the physics of battery degradation. The tutorial closes with a discussion on generalization and further research directions.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Schaeffer, Joachim ; Galuppini, Giacomo ; Rhyu, Jinwook ; Asinger, Patrick A. ; Droop, Robin ; Findeisen, Rolf ; Braatz, Richard D.
Art des Eintrags: Bibliographie
Titel: Cycle Life Prediction for Lithium-ion Batteries: Machine Learning and More
Sprache: Englisch
Publikationsjahr: 5 September 2024
Verlag: IEEE
Buchtitel: 2024 American Control Conference
Veranstaltungstitel: 2024 American Control Conference (ACC)
Veranstaltungsort: Toronto, Canada
Veranstaltungsdatum: 08.07.2024 - 12.07.2024
DOI: 10.23919/ACC60939.2024.10644790
Kurzbeschreibung (Abstract):

Batteries are dynamic systems with complicated nonlinear aging, highly dependent on cell design, chemistry, manufacturing, and operational conditions. Prediction of battery cycle life and estimation of aging states is important to accelerate battery R&D, testing, and to further the understanding of how batteries degrade. Beyond testing, battery management systems rely on real-time models and onboard diagnostics and prognostics for safe operation. Estimating the state of health and remaining useful life of a battery is important to optimize performance and use resources optimally. This tutorial begins with an overview of first-principles, machine learning, and hybrid battery models. Then, a typical pipeline for the development of interpretable, machine learning models is explained and showcased for cycle life prediction from laboratory testing data. We highlight the challenges of machine learning models, motivating the incorporation of physics in hybrid modeling approaches, which are needed to decipher the aging trajectory of batteries but require more data and further work on the physics of battery degradation. The tutorial closes with a discussion on generalization and further research directions.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 06 Nov 2024 12:54
Letzte Änderung: 14 Jan 2025 15:13
PPN: 525325697
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen