TU Darmstadt / ULB / TUbiblio

CycleGAN for interpretable online EMT compensation

Krumb, Henry ; Das, Dhritimaan ; Chadda, Romol ; Mukhopadhyay, Anirban (2024)
CycleGAN for interpretable online EMT compensation.
In: International Journal of Computer Assisted Radiology and Surgery, 2021, 16 (5)
doi: 10.26083/tuprints-00023529
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Electromagnetic tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We plan to make hybrid navigation clinical reality to reduce radiation exposure for patients and surgeons, by compensating EMT error.

Our online compensation strategy exploits cycle-consistent generative adversarial neural networks (CycleGAN). Positions are translated from various bedside environments to their bench equivalents, by adjusting their z-component. Domain-translated points are fine-tuned on the x–y plane to reduce error in the bench domain. We evaluate our compensation approach in a phantom experiment.

Since the domain-translation approach maps distorted points to their laboratory equivalents, predictions are consistent among different C-arm environments. Error is successfully reduced in all evaluation environments. Our qualitative phantom experiment demonstrates that our approach generalizes well to an unseen C-arm environment.

Adversarial, cycle-consistent training is an explicable, consistent and thus interpretable approach for online error compensation. Qualitative assessment of EMT error compensation gives a glimpse to the potential of our method for rotational error compensation.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Krumb, Henry ; Das, Dhritimaan ; Chadda, Romol ; Mukhopadhyay, Anirban
Art des Eintrags: Zweitveröffentlichung
Titel: CycleGAN for interpretable online EMT compensation
Sprache: Englisch
Publikationsjahr: 24 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Berlin ; Heidelberg
Verlag: Springer International Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Computer Assisted Radiology and Surgery
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 5
DOI: 10.26083/tuprints-00023529
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23529
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Electromagnetic tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We plan to make hybrid navigation clinical reality to reduce radiation exposure for patients and surgeons, by compensating EMT error.

Our online compensation strategy exploits cycle-consistent generative adversarial neural networks (CycleGAN). Positions are translated from various bedside environments to their bench equivalents, by adjusting their z-component. Domain-translated points are fine-tuned on the x–y plane to reduce error in the bench domain. We evaluate our compensation approach in a phantom experiment.

Since the domain-translation approach maps distorted points to their laboratory equivalents, predictions are consistent among different C-arm environments. Error is successfully reduced in all evaluation environments. Our qualitative phantom experiment demonstrates that our approach generalizes well to an unseen C-arm environment.

Adversarial, cycle-consistent training is an explicable, consistent and thus interpretable approach for online error compensation. Qualitative assessment of EMT error compensation gives a glimpse to the potential of our method for rotational error compensation.

Freie Schlagworte: Electromagnetic tracking, Hybrid navigation, Generative adversarial networks, Adversarial domain adaptation
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-235296
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Mess- und Sensortechnik
20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 24 Sep 2024 09:10
Letzte Änderung: 30 Sep 2024 11:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen