TU Darmstadt / ULB / TUbiblio

Information Gathering in Decentralized POMDPs by Policy Graph Improvement

Lauri, Mikko ; Pajarinen, Joni ; Peters, Jan (2019)
Information Gathering in Decentralized POMDPs by Policy Graph Improvement.
18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019). Montreal, Kanada (13.-17.05.2019)
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Decentralized policies for information gathering are required when multiple autonomous agents are deployed to collect data about a phenomenon of interest without the ability to communicate. Decentralized partially observable Markov decision processes (Dec-POMDPs) are a general, principled model well-suited for such decentralized multiagent decision-making problems. In this paper, we investigate Dec-POMDPs for decentralized information gathering problems. An optimal solution of a Dec-POMDP maximizes the expected sum of rewards over time. To encourage information gathering, we set the reward as a function of the agents’ state information, for example the negative Shannon entropy. We prove that if the reward is convex, then the finite-horizon value function of the corresponding Dec-POMDP is also convex. We propose the first heuristic algorithm for information gathering Dec-POMDPs, and empirically prove its effectiveness by solving problems an order of magnitude larger than previous state-of-the-art.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Lauri, Mikko ; Pajarinen, Joni ; Peters, Jan
Art des Eintrags: Bibliographie
Titel: Information Gathering in Decentralized POMDPs by Policy Graph Improvement
Sprache: Englisch
Publikationsjahr: Mai 2019
Ort: Darmstadt
Verlag: International Foundation for Autonomous Agents and Multiagent Systems
Buchtitel: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems
Veranstaltungstitel: 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019)
Veranstaltungsort: Montreal, Kanada
Veranstaltungsdatum: 13.-17.05.2019
Zugehörige Links:
Kurzbeschreibung (Abstract):

Decentralized policies for information gathering are required when multiple autonomous agents are deployed to collect data about a phenomenon of interest without the ability to communicate. Decentralized partially observable Markov decision processes (Dec-POMDPs) are a general, principled model well-suited for such decentralized multiagent decision-making problems. In this paper, we investigate Dec-POMDPs for decentralized information gathering problems. An optimal solution of a Dec-POMDP maximizes the expected sum of rewards over time. To encourage information gathering, we set the reward as a function of the agents’ state information, for example the negative Shannon entropy. We prove that if the reward is convex, then the finite-horizon value function of the corresponding Dec-POMDP is also convex. We propose the first heuristic algorithm for information gathering Dec-POMDPs, and empirically prove its effectiveness by solving problems an order of magnitude larger than previous state-of-the-art.

Freie Schlagworte: decentralized POMDPs, multi-agent planning, planning under uncertainty, information theory
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
TU-Projekte: EC/H2020|640554|SKILLS4ROBOTS
Hinterlegungsdatum: 02 Aug 2024 13:15
Letzte Änderung: 02 Aug 2024 13:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen