TU Darmstadt / ULB / TUbiblio

Probabilistic Approach to Physical Object Disentangling

Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard (2020)
Probabilistic Approach to Physical Object Disentangling.
In: IEEE Robotics and Automation Letters, 5 (4)
doi: 10.1109/LRA.2020.3006789
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Pajarinen, Joni ; Arenz, Oleg ; Peters, Jan ; Neumann, Gerhard
Art des Eintrags: Bibliographie
Titel: Probabilistic Approach to Physical Object Disentangling
Sprache: Englisch
Publikationsjahr: 2020
Ort: Darmstadt
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Robotics and Automation Letters
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 4
Kollation: 9 ungezählte Seiten
DOI: 10.1109/LRA.2020.3006789
Zugehörige Links:
Kurzbeschreibung (Abstract):

Physically disentangling entangled objects from each other is a problem encountered in waste segregation or in any task that requires disassembly of structures. Often there are no object models, and especially with cluttered irregularly shaped objects, the robot cannot create a model of the scene due to occlusion. One of our key insights is that based on previous sensory input we are only interested in moving an object out of the disentanglement around obstacles. That is, we only need to know where the robot can successfully move in order to plan the disentangling. Due to the uncertainty we integrate information about blocked movements into a probability map. The map defines the probability of the robot successfully moving to a specific configuration. Using as cost the failure probability of a sequence of movements we can then plan and execute disentangling iteratively. Since our approach circumvents only previously encountered obstacles, new movements will yield information about unknown obstacles that block movement until the robot has learned to circumvent all obstacles and disentangling succeeds. In the experiments, we use a special probabilistic version of the Rapidly exploring Random Tree (RRT) algorithm for planning and demonstrate successful disentanglement of objects both in 2-D and 3-D simulation, and, on a KUKA LBR 7-DOF robot. Moreover, our approach outperforms baseline methods.

Freie Schlagworte: Robot sensing systems, Collision avoidance, Path planning, Planning, Probabilistic logic, Task analysis, Autonomous systems, collision avoidance, intelligent robots, path planning, probabilistic computing, waste recovery
Zusätzliche Informationen:

Video attachment: https://t1p.de/r1a6d

The video illustrates the proposed approach for disentangling an object from other unknown objects.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
Hinterlegungsdatum: 02 Aug 2024 12:45
Letzte Änderung: 02 Aug 2024 12:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen