TU Darmstadt / ULB / TUbiblio

Deep Adversarial Reinforcement Learning for Object Disentangling

Laux, Melvin ; Arenz, Oleg ; Peters, Jan ; Pajarinen, Joni (2021)
Deep Adversarial Reinforcement Learning for Object Disentangling.
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA (Virtual) (24.10.2020-24.01.2021)
doi: 10.1109/IROS45743.2020.9341578
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Deep learning in combination with improved training techniques and high computational power has led to recent advances in the field of reinforcement learning (RL) and to successful robotic RL applications such as in-hand manipulation. However, most robotic RL relies on a well known initial state distribution. In real-world tasks, this information is however often not available. For example, when disentangling waste objects the actual position of the robot w.r.t. the objects may not match the positions the RL policy was trained for. To solve this problem, we present a novel adversarial reinforcement learning (ARL) framework. The ARL framework utilizes an adversary, which is trained to steer the original agent, the protagonist, to challenging states. We train the protagonist and the adversary jointly to allow them to adapt to the changing policy of their opponent. We show that our method can generalize from training to test scenarios by training an end-to-end system for robot control to solve a challenging object disentangling task. Experiments with a KUKA LBR+ 7-DOF robot arm show that our approach outperforms the baseline method in disentangling when starting from different initial states than provided during training.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Laux, Melvin ; Arenz, Oleg ; Peters, Jan ; Pajarinen, Joni
Art des Eintrags: Bibliographie
Titel: Deep Adversarial Reinforcement Learning for Object Disentangling
Sprache: Englisch
Publikationsjahr: 2021
Ort: Darmstadt
Verlag: IEEE
Buchtitel: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Kollation: 7 ungezählte Seiten
Veranstaltungstitel: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Veranstaltungsort: Las Vegas, USA (Virtual)
Veranstaltungsdatum: 24.10.2020-24.01.2021
DOI: 10.1109/IROS45743.2020.9341578
Zugehörige Links:
Kurzbeschreibung (Abstract):

Deep learning in combination with improved training techniques and high computational power has led to recent advances in the field of reinforcement learning (RL) and to successful robotic RL applications such as in-hand manipulation. However, most robotic RL relies on a well known initial state distribution. In real-world tasks, this information is however often not available. For example, when disentangling waste objects the actual position of the robot w.r.t. the objects may not match the positions the RL policy was trained for. To solve this problem, we present a novel adversarial reinforcement learning (ARL) framework. The ARL framework utilizes an adversary, which is trained to steer the original agent, the protagonist, to challenging states. We train the protagonist and the adversary jointly to allow them to adapt to the changing policy of their opponent. We show that our method can generalize from training to test scenarios by training an end-to-end system for robot control to solve a challenging object disentangling task. Experiments with a KUKA LBR+ 7-DOF robot arm show that our approach outperforms the baseline method in disentangling when starting from different initial states than provided during training.

Freie Schlagworte: Training, Visualization, Sensitivity, Shape, Reinforcement learning, Task analysis, Robots
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
Hinterlegungsdatum: 02 Aug 2024 12:45
Letzte Änderung: 02 Aug 2024 12:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen