TU Darmstadt / ULB / TUbiblio

Electric-Pneumatic Actuator: A New Muscle for Locomotion

Ahmad Sharbafi, Maziar ; Shin, Hirofumi ; Zhao, Guoping ; Hosoda, Koh ; Seyfarth, Andre (2017)
Electric-Pneumatic Actuator: A New Muscle for Locomotion.
In: Actuators, 6 (4)
doi: 10.3390/act6040030
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections) which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA) as an enhanced variable impedance actuator (VIA). EPA is consisted of a pneumatic artificial muscle (PAM) and an electric motor (EM). In contrast to other VIAs, the pneumatic artificial muscle (PAM) within the EPA provides not only adaptable compliance, but also an additional powerful actuator with muscle-like properties, which can be arranged in different combinations (e.g., in series or parallel) to the EM. The novel hybrid actuator shares the advantages of both integrated actuator types combining precise control of EM with compliant energy storage of PAM, which are required for efficient and adjustable locomotion. Experimental and simulation results based on the new dynamic model of PAM support the hypothesis that combination of the two actuators can improve efficiency (energy and peak power) and performance, while does not increase control complexity and weight, considerably. Finally, the experiments on EPA adapted bipedal robot (knee joint of the BioBiped3 robot) show improved efficiency of the actuator at different frequencies.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Ahmad Sharbafi, Maziar ; Shin, Hirofumi ; Zhao, Guoping ; Hosoda, Koh ; Seyfarth, Andre
Art des Eintrags: Bibliographie
Titel: Electric-Pneumatic Actuator: A New Muscle for Locomotion
Sprache: Englisch
Publikationsjahr: 2017
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Actuators
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 4
DOI: 10.3390/act6040030
URL / URN: https://doi.org/10.3390/act6040030
Zugehörige Links:
Kurzbeschreibung (Abstract):

A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections) which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA) as an enhanced variable impedance actuator (VIA). EPA is consisted of a pneumatic artificial muscle (PAM) and an electric motor (EM). In contrast to other VIAs, the pneumatic artificial muscle (PAM) within the EPA provides not only adaptable compliance, but also an additional powerful actuator with muscle-like properties, which can be arranged in different combinations (e.g., in series or parallel) to the EM. The novel hybrid actuator shares the advantages of both integrated actuator types combining precise control of EM with compliant energy storage of PAM, which are required for efficient and adjustable locomotion. Experimental and simulation results based on the new dynamic model of PAM support the hypothesis that combination of the two actuators can improve efficiency (energy and peak power) and performance, while does not increase control complexity and weight, considerably. Finally, the experiments on EPA adapted bipedal robot (knee joint of the BioBiped3 robot) show improved efficiency of the actuator at different frequencies.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 700 Künste und Unterhaltung > 796 Sport
Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft
Zentrale Einrichtungen
Zentrale Einrichtungen > Centre for Cognitive Science (CCS)
Hinterlegungsdatum: 02 Aug 2024 12:33
Letzte Änderung: 02 Aug 2024 12:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen