TU Darmstadt / ULB / TUbiblio

Online inference of human belief for cooperative robots

Bühler, Moritz ; Weisswange, Thomas (2019)
Online inference of human belief for cooperative robots.
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain (01.05. - 05.10.2018)
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

For human-robot cooperation, inferring a human's cognitive state is very important for an efficient and natural interaction. Similar to human-human cooperation, understanding what the partner plans and knowing, if he is situation aware, is necessary to prevent collisions, offer support at the right time, correct mistakes before they happen or choose the best actions for oneself as early as possible. We propose a model-based belief filter to extract relevant aspects of a human's mental state online during cooperation. It performs inference based on human actions and its own task knowledge, modeling cognitive processes like perception and action selection. In contrast to most prior work, we explicitly estimate the human belief instead of inferring only a single mode or intention. Since this is a double inference process, we focus on representing the human estimates of environmental state and task as well as corresponding uncertainties. We designed a human-robot cooperation experiment that allowed for a variety of cognitive states of both agents and collected data to test and evaluate the proposed belief filter. The results are promising, as our system can be used to provide reasonable predictions of the human action and insights into his situation awareness. At the same time it is inferring interpretable information about the underlying cognitive states - A belief about the human's belief about the environment.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Bühler, Moritz ; Weisswange, Thomas
Art des Eintrags: Zweitveröffentlichung
Titel: Online inference of human belief for cooperative robots
Sprache: Englisch
Publikationsjahr: 18 Januar 2019
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Verlag: IEEE
Veranstaltungstitel: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Veranstaltungsort: Madrid, Spain
Veranstaltungsdatum: 01.05. - 05.10.2018
URL / URN: https://tuprints.ulb.tu-darmstadt.de/8295
Zugehörige Links:
Kurzbeschreibung (Abstract):

For human-robot cooperation, inferring a human's cognitive state is very important for an efficient and natural interaction. Similar to human-human cooperation, understanding what the partner plans and knowing, if he is situation aware, is necessary to prevent collisions, offer support at the right time, correct mistakes before they happen or choose the best actions for oneself as early as possible. We propose a model-based belief filter to extract relevant aspects of a human's mental state online during cooperation. It performs inference based on human actions and its own task knowledge, modeling cognitive processes like perception and action selection. In contrast to most prior work, we explicitly estimate the human belief instead of inferring only a single mode or intention. Since this is a double inference process, we focus on representing the human estimates of environmental state and task as well as corresponding uncertainties. We designed a human-robot cooperation experiment that allowed for a variety of cognitive states of both agents and collected data to test and evaluate the proposed belief filter. The results are promising, as our system can be used to provide reasonable predictions of the human action and insights into his situation awareness. At the same time it is inferring interpretable information about the underlying cognitive states - A belief about the human's belief about the environment.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-82953
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 20 Jun 2024 16:31
Letzte Änderung: 20 Jun 2024 16:31
PPN: 442923481
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen