TU Darmstadt / ULB / TUbiblio

Experimentally implemented dynamic optogenetic optimization of ATPase expression using knowledge-based and Gaussian-process-supported models

Espinel-Ríos, Sebastián ; Behrendt, Gerrich ; Bauer, Jasmin ; Morabito, Bruno ; Pohlodek, Johannes ; Schütze, Andrea ; Findeisen, Rolf ; Bettenbrock, Katja ; Klamt, Steffen (2024)
Experimentally implemented dynamic optogenetic optimization of ATPase expression using knowledge-based and Gaussian-process-supported models.
In: Process Biochemistry, 143
doi: 10.1016/j.procbio.2024.04.032
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Optogenetic modulation of adenosine triphosphatase (ATPase) expression represents a novel approach to maximize bioprocess efficiency by leveraging enforced adenosine triphosphate (ATP) turnover. In this study, we experimentally implement a model-based open-loop optimization scheme for optogenetic modulation of the expression of ATPase. Increasing the intracellular concentration of ATPase, and thus the level of ATP turnover, in bioprocesses with product synthesis coupled with ATP generation, can lead to increased substrate uptrake and product formation. Previous simulation studies formulated optimal control problems using dynamic constraint-based models to find optimal light inputs in fermentations with optogenetically mediated ATPase expression. However, using these models poses challenges due to resulting bilevel optimizations and complex parameterization. Here, we outline a simplified unsegregated and quasi-unstructured kinetic modeling approach that reduces the number of dynamic states and leads to single-level optimizations. The models can be augmented with Gaussian processes to compensate for model uncertainties. We implement optimal control constrained by knowledge-based and hybrid models for optogenetic ATPase expression in Escherichia coli with lactate as the main product. To do so, we genetically engineer E. coli to obtain optogenetic expression of ATPase using the CcaS/CcaR system. This represents the first experimental implementation of model-based optimization of ATPase expression in bioprocesses.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Espinel-Ríos, Sebastián ; Behrendt, Gerrich ; Bauer, Jasmin ; Morabito, Bruno ; Pohlodek, Johannes ; Schütze, Andrea ; Findeisen, Rolf ; Bettenbrock, Katja ; Klamt, Steffen
Art des Eintrags: Bibliographie
Titel: Experimentally implemented dynamic optogenetic optimization of ATPase expression using knowledge-based and Gaussian-process-supported models
Sprache: Englisch
Publikationsjahr: 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Process Biochemistry
Jahrgang/Volume einer Zeitschrift: 143
DOI: 10.1016/j.procbio.2024.04.032
Kurzbeschreibung (Abstract):

Optogenetic modulation of adenosine triphosphatase (ATPase) expression represents a novel approach to maximize bioprocess efficiency by leveraging enforced adenosine triphosphate (ATP) turnover. In this study, we experimentally implement a model-based open-loop optimization scheme for optogenetic modulation of the expression of ATPase. Increasing the intracellular concentration of ATPase, and thus the level of ATP turnover, in bioprocesses with product synthesis coupled with ATP generation, can lead to increased substrate uptrake and product formation. Previous simulation studies formulated optimal control problems using dynamic constraint-based models to find optimal light inputs in fermentations with optogenetically mediated ATPase expression. However, using these models poses challenges due to resulting bilevel optimizations and complex parameterization. Here, we outline a simplified unsegregated and quasi-unstructured kinetic modeling approach that reduces the number of dynamic states and leads to single-level optimizations. The models can be augmented with Gaussian processes to compensate for model uncertainties. We implement optimal control constrained by knowledge-based and hybrid models for optogenetic ATPase expression in Escherichia coli with lactate as the main product. To do so, we genetically engineer E. coli to obtain optogenetic expression of ATPase using the CcaS/CcaR system. This represents the first experimental implementation of model-based optimization of ATPase expression in bioprocesses.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 03 Jun 2024 11:48
Letzte Änderung: 09 Okt 2024 12:50
PPN: 522051715
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen