TU Darmstadt / ULB / TUbiblio

Defect-induced phase transition in hafnium oxide thin films: comparing heavy ion irradiation and oxygen-engineering effects

Vogel, Tobias ; Kaiser, Nico ; Petzold, Stefan ; Piros, Eszter ; Guillaume, Nicolas ; Lefevre, Gauthier ; Charpin-Nicolle, Christelle ; David, Sylvain ; Vallee, Christophe ; Nowak, Etienne ; Trautmann, Christina ; Alff, Lambert (2021)
Defect-induced phase transition in hafnium oxide thin films: comparing heavy ion irradiation and oxygen-engineering effects.
In: IEEE Transactions on Nuclear Science, 68 (8)
doi: 10.1109/TNS.2021.3085962
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Hafnium oxide acts as a functional dielectric in a variety of traditional and emerging nonvolatile memory technologies. To investigate the effect of heavy ion irradiation on its crystalline structure, highly textured hafnium oxide films were irradiated with 1.635 GeV Au ions of fluences ranging from 1×10 9 to 7×10 12 ions/cm 2 . For monoclinic hafnium oxide films, a fluence-dependent defect-induced phase transition to a defect-stabilized tetragonal phase is identified. In low-temperature tetragonal hafnium oxide films, the X-ray diffraction (XRD) patterns show an out-of-plane lattice constant decrease with increasing irradiation fluence. Observed crystalline changes are strikingly similar to trends found for oxygen-engineered hafnium oxide films, directly grown at varying oxidation conditions. The correlation of structural changes with in vacuo electron spectroscopy data of oxygen-engineered films suggests that the irradiation of hafnium oxide leads to an oxygen loss that increases with fluence. Therefore, the underlying mechanism of the monoclinic to tetragonal phase transition is obviously directly related to oxygen defects. This new information allows predictions of device stability under swift heavy ion irradiation of hafnium oxide-based devices.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Vogel, Tobias ; Kaiser, Nico ; Petzold, Stefan ; Piros, Eszter ; Guillaume, Nicolas ; Lefevre, Gauthier ; Charpin-Nicolle, Christelle ; David, Sylvain ; Vallee, Christophe ; Nowak, Etienne ; Trautmann, Christina ; Alff, Lambert
Art des Eintrags: Bibliographie
Titel: Defect-induced phase transition in hafnium oxide thin films: comparing heavy ion irradiation and oxygen-engineering effects
Sprache: Englisch
Publikationsjahr: 7 Juni 2021
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Nuclear Science
Jahrgang/Volume einer Zeitschrift: 68
(Heft-)Nummer: 8
DOI: 10.1109/TNS.2021.3085962
Kurzbeschreibung (Abstract):

Hafnium oxide acts as a functional dielectric in a variety of traditional and emerging nonvolatile memory technologies. To investigate the effect of heavy ion irradiation on its crystalline structure, highly textured hafnium oxide films were irradiated with 1.635 GeV Au ions of fluences ranging from 1×10 9 to 7×10 12 ions/cm 2 . For monoclinic hafnium oxide films, a fluence-dependent defect-induced phase transition to a defect-stabilized tetragonal phase is identified. In low-temperature tetragonal hafnium oxide films, the X-ray diffraction (XRD) patterns show an out-of-plane lattice constant decrease with increasing irradiation fluence. Observed crystalline changes are strikingly similar to trends found for oxygen-engineered hafnium oxide films, directly grown at varying oxidation conditions. The correlation of structural changes with in vacuo electron spectroscopy data of oxygen-engineered films suggests that the irradiation of hafnium oxide leads to an oxygen loss that increases with fluence. Therefore, the underlying mechanism of the monoclinic to tetragonal phase transition is obviously directly related to oxygen defects. This new information allows predictions of device stability under swift heavy ion irradiation of hafnium oxide-based devices.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
Hinterlegungsdatum: 27 Feb 2024 07:08
Letzte Änderung: 27 Feb 2024 07:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen