TU Darmstadt / ULB / TUbiblio

Learning secure corridors for model predictive path following control of autonomous systems in cluttered environments

Holzmann, Philipp ; Matschek, Janine ; Pfefferkorn, Maik ; Findeisen, Rolf (2022)
Learning secure corridors for model predictive path following control of autonomous systems in cluttered environments.
European Control Conference 2022. London, United Kingdom (12.07.2022-15.07.2022)
doi: 10.23919/ECC55457.2022.9838219
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Safe, collision-free movement of autonomous systems such as robots, mobile platforms, or drones in cluttered environments is challenging. Often the exact positions and dimensions of other systems and objects are uncertain. However, data from successful, previous trajectories might be available. We design a learning-supported model predictive controller for autonomous systems to navigate through a “safe” path-corridor learned from prior collision-free movement trajectories using Gaussian process regression. The posterior mean and variance of the Gaussian process define a corridor that allows for safe transition through the cluttered environment. A model predictive controller is used to find the optimal path inside the learned corridor and steers the system to follow it. It guarantees satisfaction of constraints on the system as well as on the reference path which is subject to the learned corridor limitations. Simulation studies for an autonomous mobile robot that navigates through an environment with obstacles demonstrate the approach's benefits. It is shown that the controller's flexibility to move freely in the safe path corridor increases the performance when compared to using a predefined fixed path.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Holzmann, Philipp ; Matschek, Janine ; Pfefferkorn, Maik ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Learning secure corridors for model predictive path following control of autonomous systems in cluttered environments
Sprache: Englisch
Publikationsjahr: 5 August 2022
Verlag: IEEE
Buchtitel: 2022 European Control Conference (ECC)
Veranstaltungstitel: European Control Conference 2022
Veranstaltungsort: London, United Kingdom
Veranstaltungsdatum: 12.07.2022-15.07.2022
DOI: 10.23919/ECC55457.2022.9838219
Kurzbeschreibung (Abstract):

Safe, collision-free movement of autonomous systems such as robots, mobile platforms, or drones in cluttered environments is challenging. Often the exact positions and dimensions of other systems and objects are uncertain. However, data from successful, previous trajectories might be available. We design a learning-supported model predictive controller for autonomous systems to navigate through a “safe” path-corridor learned from prior collision-free movement trajectories using Gaussian process regression. The posterior mean and variance of the Gaussian process define a corridor that allows for safe transition through the cluttered environment. A model predictive controller is used to find the optimal path inside the learned corridor and steers the system to follow it. It guarantees satisfaction of constraints on the system as well as on the reference path which is subject to the learned corridor limitations. Simulation studies for an autonomous mobile robot that navigates through an environment with obstacles demonstrate the approach's benefits. It is shown that the controller's flexibility to move freely in the safe path corridor increases the performance when compared to using a predefined fixed path.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 13 Mär 2024 10:34
Letzte Änderung: 11 Jun 2024 17:24
PPN: 51903936X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen