TU Darmstadt / ULB / TUbiblio

Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers

Kumar, Sandeep ; Dagli, Daghan ; Dehm, Simone ; Das, Chittaranjan ; Wei, Li ; Chen, Yuan ; Hennrich, Frank ; Krupke, Ralph (2024)
Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers.
In: Physica Status Solidi (RRL) – Rapid Research Letters, 2020, 14 (8)
doi: 10.26083/tuprints-00015634
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Carbon nanotube field‐effect transistors fabricated on silicon wafers with thermal oxide often suffer from large gate‐voltage hysteresis, induced by charge trapping sites in oxides, surface hydroxyl groups, and the presence of water molecules. Surface functionalization and passivation, as well as vacuum annealing and reduced operating temperature, have shown to diminish or even eliminate hysteresis. Herein, the fabrication of nearly hysteresis‐free transistors on Si/SiO₂ by embedding carbon nanotubes and the connecting electrodes in a hexagonal boron nitride (h‐BN) bottom layer and a polytetrafluoroethylene (PTFE) top layer is demonstrated. The conditions at which catalyst‐free synthesis of h‐BN on SiO₂/Si with borazine is obtained, and the subsequent liquid‐phase deposition of PTFE, are discussed. Device transfer curves are measured before and after PTFE deposition. It is found that the hysteresis is reduced after PTFE deposition, but vanishes only after a waiting period of several days. Simultaneously, the on‐state current increases with time. The results give evidence for the absence of trap states in h‐BN/PTFE heterolayers and a high breakthrough field strength in those wafer‐scalable materials.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kumar, Sandeep ; Dagli, Daghan ; Dehm, Simone ; Das, Chittaranjan ; Wei, Li ; Chen, Yuan ; Hennrich, Frank ; Krupke, Ralph
Art des Eintrags: Zweitveröffentlichung
Titel: Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers
Sprache: Englisch
Publikationsjahr: 9 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physica Status Solidi (RRL) – Rapid Research Letters
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 8
Kollation: 7 Seiten
DOI: 10.26083/tuprints-00015634
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15634
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Carbon nanotube field‐effect transistors fabricated on silicon wafers with thermal oxide often suffer from large gate‐voltage hysteresis, induced by charge trapping sites in oxides, surface hydroxyl groups, and the presence of water molecules. Surface functionalization and passivation, as well as vacuum annealing and reduced operating temperature, have shown to diminish or even eliminate hysteresis. Herein, the fabrication of nearly hysteresis‐free transistors on Si/SiO₂ by embedding carbon nanotubes and the connecting electrodes in a hexagonal boron nitride (h‐BN) bottom layer and a polytetrafluoroethylene (PTFE) top layer is demonstrated. The conditions at which catalyst‐free synthesis of h‐BN on SiO₂/Si with borazine is obtained, and the subsequent liquid‐phase deposition of PTFE, are discussed. Device transfer curves are measured before and after PTFE deposition. It is found that the hysteresis is reduced after PTFE deposition, but vanishes only after a waiting period of several days. Simultaneously, the on‐state current increases with time. The results give evidence for the absence of trap states in h‐BN/PTFE heterolayers and a high breakthrough field strength in those wafer‐scalable materials.

Freie Schlagworte: boron nitride, carbon nanotubes, hysteresis, polytetrafluoroethylene, transistors
ID-Nummer: 2000193
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-156345
Zusätzliche Informationen:

This article also appears in: Electronic Properties of Novel Materials

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Molekulare Nanostrukturen
Hinterlegungsdatum: 09 Jan 2024 12:46
Letzte Änderung: 10 Jan 2024 09:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen