TU Darmstadt / ULB / TUbiblio

Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees

Schurig, Roland ; Himmel, Andreas ; Findeisen, Rolf (2023)
Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees.
doi: 10.48550/arXiv.2312.02734
Report, Bibliographie

Kurzbeschreibung (Abstract)

We consider the problem of reducing the dimension of the discrete-time optimal control problem that is solved repeatedly online in model predictive control. We show that a reduced-order scheme, which solves the optimization problem in a low-dimensional subspace, inherits the stability and recursive feasibility properties from the original formulation. We introduce a necessary and sufficient condition for initial feasibility and incorporate that in the subspace design. Finally, we use concepts of optimization over Riemannian manifolds to compute a subspace that provides optimal representations for a set of pre-defined high-dimensional optimizers under the initial admissibility constraint.

Typ des Eintrags: Report
Erschienen: 2023
Autor(en): Schurig, Roland ; Himmel, Andreas ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Geometric Data-Driven Dimensionality Reduction in MPC with Guarantees
Sprache: Englisch
Publikationsjahr: 5 Dezember 2023
Verlag: arXiv
Reihe: Systems and Control
Auflage: 1. Version
DOI: 10.48550/arXiv.2312.02734
URL / URN: https://arxiv.org/abs/2312.02734
Kurzbeschreibung (Abstract):

We consider the problem of reducing the dimension of the discrete-time optimal control problem that is solved repeatedly online in model predictive control. We show that a reduced-order scheme, which solves the optimization problem in a low-dimensional subspace, inherits the stability and recursive feasibility properties from the original formulation. We introduce a necessary and sufficient condition for initial feasibility and incorporate that in the subspace design. Finally, we use concepts of optimization over Riemannian manifolds to compute a subspace that provides optimal representations for a set of pre-defined high-dimensional optimizers under the initial admissibility constraint.

Zusätzliche Informationen:

Preprint

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 08 Dez 2023 13:11
Letzte Änderung: 31 Jan 2024 10:27
PPN: 515154415
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen