TU Darmstadt / ULB / TUbiblio

Controlling the Formation of Conductive Pathways in Memristive Devices

Winkler, Robert ; Zintler, Alexander ; Petzold, Stefan ; Piros, Eszter ; Kaiser, Nico ; Vogel, Tobias ; Nasiou, Déspina ; McKenna, Keith P. ; Molina‐Luna, Leopoldo ; Alff, Lambert (2023)
Controlling the Formation of Conductive Pathways in Memristive Devices.
In: Advanced Science, 2022, 9 (33)
doi: 10.26083/tuprints-00023711
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Resistive random‐access memories are promising candidates for novel computer architectures such as in‐memory computing, multilevel data storage, and neuromorphics. Their working principle is based on electrically stimulated materials changes that allow access to two (digital), multiple (multilevel), or quasi‐continuous (analog) resistive states. However, the stochastic nature of forming and switching the conductive pathway involves complex atomistic defect configurations resulting in considerable variability. This paper reveals that the intricate interplay of 0D and 2D defects can be engineered to achieve reproducible and controlled low‐voltage formation of conducting filaments. The author find that the orientation of grain boundaries in polycrystalline HfOₓ is directly related to the required forming voltage of the conducting filaments, unravelling a neglected origin of variability. Based on the realistic atomic structure of grain boundaries obtained from ultra‐high resolution imaging combined with first‐principles calculations including local strain, this paper shows how oxygen vacancy segregation energies and the associated electronic states in the vicinity of the Fermi level govern the formation of conductive pathways in memristive devices. These findings are applicable to non‐amorphous valence change filamentary type memristive device. The results demonstrate that a fundamental atomistic understanding of defect chemistry is pivotal to design memristors as key element of future electronics.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Winkler, Robert ; Zintler, Alexander ; Petzold, Stefan ; Piros, Eszter ; Kaiser, Nico ; Vogel, Tobias ; Nasiou, Déspina ; McKenna, Keith P. ; Molina‐Luna, Leopoldo ; Alff, Lambert
Art des Eintrags: Zweitveröffentlichung
Titel: Controlling the Formation of Conductive Pathways in Memristive Devices
Sprache: Englisch
Publikationsjahr: 27 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 33
Kollation: 7 Seiten
DOI: 10.26083/tuprints-00023711
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23711
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Resistive random‐access memories are promising candidates for novel computer architectures such as in‐memory computing, multilevel data storage, and neuromorphics. Their working principle is based on electrically stimulated materials changes that allow access to two (digital), multiple (multilevel), or quasi‐continuous (analog) resistive states. However, the stochastic nature of forming and switching the conductive pathway involves complex atomistic defect configurations resulting in considerable variability. This paper reveals that the intricate interplay of 0D and 2D defects can be engineered to achieve reproducible and controlled low‐voltage formation of conducting filaments. The author find that the orientation of grain boundaries in polycrystalline HfOₓ is directly related to the required forming voltage of the conducting filaments, unravelling a neglected origin of variability. Based on the realistic atomic structure of grain boundaries obtained from ultra‐high resolution imaging combined with first‐principles calculations including local strain, this paper shows how oxygen vacancy segregation energies and the associated electronic states in the vicinity of the Fermi level govern the formation of conductive pathways in memristive devices. These findings are applicable to non‐amorphous valence change filamentary type memristive device. The results demonstrate that a fundamental atomistic understanding of defect chemistry is pivotal to design memristors as key element of future electronics.

Freie Schlagworte: first principle calculation, grain boundary atomic structures, hafnium oxide, resistive switching memory, scanning transmission electron microscopy
ID-Nummer: 2201806
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-237116
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
Hinterlegungsdatum: 27 Nov 2023 13:59
Letzte Änderung: 28 Nov 2023 13:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen