Winkler, Robert ; Zintler, Alexander ; Petzold, Stefan ; Piros, Eszter ; Kaiser, Nico ; Vogel, Tobias ; Nasiou, Déspina ; McKenna, Keith P. ; Molina‐Luna, Leopoldo ; Alff, Lambert (2023)
Controlling the Formation of Conductive Pathways in Memristive Devices.
In: Advanced Science, 2022, 9 (33)
doi: 10.26083/tuprints-00023711
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Resistive random‐access memories are promising candidates for novel computer architectures such as in‐memory computing, multilevel data storage, and neuromorphics. Their working principle is based on electrically stimulated materials changes that allow access to two (digital), multiple (multilevel), or quasi‐continuous (analog) resistive states. However, the stochastic nature of forming and switching the conductive pathway involves complex atomistic defect configurations resulting in considerable variability. This paper reveals that the intricate interplay of 0D and 2D defects can be engineered to achieve reproducible and controlled low‐voltage formation of conducting filaments. The author find that the orientation of grain boundaries in polycrystalline HfOₓ is directly related to the required forming voltage of the conducting filaments, unravelling a neglected origin of variability. Based on the realistic atomic structure of grain boundaries obtained from ultra‐high resolution imaging combined with first‐principles calculations including local strain, this paper shows how oxygen vacancy segregation energies and the associated electronic states in the vicinity of the Fermi level govern the formation of conductive pathways in memristive devices. These findings are applicable to non‐amorphous valence change filamentary type memristive device. The results demonstrate that a fundamental atomistic understanding of defect chemistry is pivotal to design memristors as key element of future electronics.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Winkler, Robert ; Zintler, Alexander ; Petzold, Stefan ; Piros, Eszter ; Kaiser, Nico ; Vogel, Tobias ; Nasiou, Déspina ; McKenna, Keith P. ; Molina‐Luna, Leopoldo ; Alff, Lambert |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Controlling the Formation of Conductive Pathways in Memristive Devices |
Sprache: | Englisch |
Publikationsjahr: | 27 November 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Ort der Erstveröffentlichung: | Weinheim |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Science |
Jahrgang/Volume einer Zeitschrift: | 9 |
(Heft-)Nummer: | 33 |
Kollation: | 7 Seiten |
DOI: | 10.26083/tuprints-00023711 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/23711 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Resistive random‐access memories are promising candidates for novel computer architectures such as in‐memory computing, multilevel data storage, and neuromorphics. Their working principle is based on electrically stimulated materials changes that allow access to two (digital), multiple (multilevel), or quasi‐continuous (analog) resistive states. However, the stochastic nature of forming and switching the conductive pathway involves complex atomistic defect configurations resulting in considerable variability. This paper reveals that the intricate interplay of 0D and 2D defects can be engineered to achieve reproducible and controlled low‐voltage formation of conducting filaments. The author find that the orientation of grain boundaries in polycrystalline HfOₓ is directly related to the required forming voltage of the conducting filaments, unravelling a neglected origin of variability. Based on the realistic atomic structure of grain boundaries obtained from ultra‐high resolution imaging combined with first‐principles calculations including local strain, this paper shows how oxygen vacancy segregation energies and the associated electronic states in the vicinity of the Fermi level govern the formation of conductive pathways in memristive devices. These findings are applicable to non‐amorphous valence change filamentary type memristive device. The results demonstrate that a fundamental atomistic understanding of defect chemistry is pivotal to design memristors as key element of future electronics. |
Freie Schlagworte: | first principle calculation, grain boundary atomic structures, hafnium oxide, resistive switching memory, scanning transmission electron microscopy |
ID-Nummer: | 2201806 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-237116 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik 500 Naturwissenschaften und Mathematik > 540 Chemie |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten |
Hinterlegungsdatum: | 27 Nov 2023 13:59 |
Letzte Änderung: | 28 Nov 2023 13:18 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Controlling the Formation of Conductive Pathways in Memristive Devices. (deposited 27 Nov 2023 13:59) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |