TU Darmstadt / ULB / TUbiblio

Inference, Attention, and Decision in a Bayesian Neural Architecture

Yu, Angela J ; Dayan, Peter (2004)
Inference, Attention, and Decision in a Bayesian Neural Architecture.
NIPS 2004. Vancouver (13.12.2004-18.12.2004)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We study the synthesis of neural coding, selective attention and percep- tual decision making. A hierarchical neural architecture is proposed, which implements Bayesian integration of noisy sensory input and top- down attentional priors, leading to sound perceptual discrimination. The model offers an explicit explanation for the experimentally observed modulation that prior information in one stimulus feature (location) can have on an independent feature (orientation). The network's intermediate levels of representation instantiate known physiological properties of vi- sual cortical neurons. The model also illustrates a possible reconciliation of cortical and neuromodulatory representations of uncertainty.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2004
Autor(en): Yu, Angela J ; Dayan, Peter
Art des Eintrags: Bibliographie
Titel: Inference, Attention, and Decision in a Bayesian Neural Architecture
Sprache: Englisch
Publikationsjahr: 2004
Ort: Cambridge
Verlag: MIT Press
Buchtitel: Advances in Neural Information Processing Systems 17 (NIPS 2004)
Band einer Reihe: 17
Veranstaltungstitel: NIPS 2004
Veranstaltungsort: Vancouver
Veranstaltungsdatum: 13.12.2004-18.12.2004
URL / URN: https://proceedings.neurips.cc/paper_files/paper/2004/hash/0...
Kurzbeschreibung (Abstract):

We study the synthesis of neural coding, selective attention and percep- tual decision making. A hierarchical neural architecture is proposed, which implements Bayesian integration of noisy sensory input and top- down attentional priors, leading to sound perceptual discrimination. The model offers an explicit explanation for the experimentally observed modulation that prior information in one stimulus feature (location) can have on an independent feature (orientation). The network's intermediate levels of representation instantiate known physiological properties of vi- sual cortical neurons. The model also illustrates a possible reconciliation of cortical and neuromodulatory representations of uncertainty.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
Hinterlegungsdatum: 31 Okt 2023 09:42
Letzte Änderung: 01 Nov 2023 07:21
PPN: 512786380
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen