TU Darmstadt / ULB / TUbiblio

Sequential Hypothesis Testing under Stochastic Deadlines

Frazier, Peter ; Yu, Angela J (2007)
Sequential Hypothesis Testing under Stochastic Deadlines.
Twenty-First Annual Conference on Neural Information Processing Systems (NIPS 2007). Vancouver (03.12.2007-08.12.2007)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Most models of decision-making in neuroscience assume an infinite horizon, which yields an optimal solution that integrates evidence up to a fixed decision threshold; however, under most experimental as well as naturalistic behavioral settings, the decision has to be made before some finite deadline, which is often experienced as a stochastic quantity, either due to variable external constraints or internal timing uncertainty. In this work, we formulate this problem as sequential hypothesis testing under a stochastic horizon. We use dynamic programming tools to show that, for a large class of deadline distributions, the Bayes-optimal solution requires integrating evidence up to a threshold that declines monotonically over time. We use numerical simulations to illustrate the optimal policy in the special cases of a fixed deadline and one that is drawn from a gamma distribution.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2007
Autor(en): Frazier, Peter ; Yu, Angela J
Art des Eintrags: Bibliographie
Titel: Sequential Hypothesis Testing under Stochastic Deadlines
Sprache: Englisch
Publikationsjahr: 2007
Ort: Red Hook, NY
Verlag: Curran Associates, Inc.
Buchtitel: Advances in Neural Information Processing Systems 20 (NIPS 2007)
Band einer Reihe: 20
Veranstaltungstitel: Twenty-First Annual Conference on Neural Information Processing Systems (NIPS 2007)
Veranstaltungsort: Vancouver
Veranstaltungsdatum: 03.12.2007-08.12.2007
URL / URN: https://papers.nips.cc/paper_files/paper/2007/hash/9c82c7143...
Kurzbeschreibung (Abstract):

Most models of decision-making in neuroscience assume an infinite horizon, which yields an optimal solution that integrates evidence up to a fixed decision threshold; however, under most experimental as well as naturalistic behavioral settings, the decision has to be made before some finite deadline, which is often experienced as a stochastic quantity, either due to variable external constraints or internal timing uncertainty. In this work, we formulate this problem as sequential hypothesis testing under a stochastic horizon. We use dynamic programming tools to show that, for a large class of deadline distributions, the Bayes-optimal solution requires integrating evidence up to a threshold that declines monotonically over time. We use numerical simulations to illustrate the optimal policy in the special cases of a fixed deadline and one that is drawn from a gamma distribution.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
Hinterlegungsdatum: 01 Nov 2023 08:45
Letzte Änderung: 02 Nov 2023 07:30
PPN: 512804494
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen