TU Darmstadt / ULB / TUbiblio

Information Gathering in Decentralized POMDPs by Policy Graph Improvement

Lauri, Mikko ; Pajarinen, Joni ; Peters, Jan (2023)
Information Gathering in Decentralized POMDPs by Policy Graph Improvement.
18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019). Montreal, Kanada (13.05.2019-17.05.2019)
doi: 10.26083/tuprints-00020576
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Decentralized policies for information gathering are required when multiple autonomous agents are deployed to collect data about a phenomenon of interest without the ability to communicate. Decentralized partially observable Markov decision processes (Dec-POMDPs) are a general, principled model well-suited for such decentralized multiagent decision-making problems. In this paper, we investigate Dec-POMDPs for decentralized information gathering problems. An optimal solution of a Dec-POMDP maximizes the expected sum of rewards over time. To encourage information gathering, we set the reward as a function of the agents’ state information, for example the negative Shannon entropy. We prove that if the reward is convex, then the finite-horizon value function of the corresponding Dec-POMDP is also convex. We propose the first heuristic algorithm for information gathering Dec-POMDPs, and empirically prove its effectiveness by solving problems an order of magnitude larger than previous state-of-the-art.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Lauri, Mikko ; Pajarinen, Joni ; Peters, Jan
Art des Eintrags: Zweitveröffentlichung
Titel: Information Gathering in Decentralized POMDPs by Policy Graph Improvement
Sprache: Englisch
Publikationsjahr: 17 Oktober 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Mai 2019
Verlag: International Foundation for Autonomous Agents and Multiagent Systems
Buchtitel: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems
Veranstaltungstitel: 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019)
Veranstaltungsort: Montreal, Kanada
Veranstaltungsdatum: 13.05.2019-17.05.2019
DOI: 10.26083/tuprints-00020576
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20576
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Decentralized policies for information gathering are required when multiple autonomous agents are deployed to collect data about a phenomenon of interest without the ability to communicate. Decentralized partially observable Markov decision processes (Dec-POMDPs) are a general, principled model well-suited for such decentralized multiagent decision-making problems. In this paper, we investigate Dec-POMDPs for decentralized information gathering problems. An optimal solution of a Dec-POMDP maximizes the expected sum of rewards over time. To encourage information gathering, we set the reward as a function of the agents’ state information, for example the negative Shannon entropy. We prove that if the reward is convex, then the finite-horizon value function of the corresponding Dec-POMDP is also convex. We propose the first heuristic algorithm for information gathering Dec-POMDPs, and empirically prove its effectiveness by solving problems an order of magnitude larger than previous state-of-the-art.

Freie Schlagworte: decentralized POMDPs, multi-agent planning, planning under uncertainty, information theory
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-205764
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
TU-Projekte: EC/H2020|640554|SKILLS4ROBOTS
Hinterlegungsdatum: 17 Okt 2023 11:34
Letzte Änderung: 18 Okt 2023 08:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen