TU Darmstadt / ULB / TUbiblio

Variability in Human Response Time Reflects Statistical Learning and Adaptive Decision-Making

Ma, Ning ; Yu, Angela J (2015)
Variability in Human Response Time Reflects Statistical Learning and Adaptive Decision-Making.
37th Annual Meeting of the Cognitive Science Society (Cogsci 2015). Pasadena, California (23.07.2015-25.07.2015)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Response time (RT) is an oft-used but ”noisy” behavioral measure in psychology. Here, we combine modeling and psychophysics to examine the hypothesis that RT variability may reflect ongoing statistical learning and consequent adjustment of behavioral strategy. We utilize the stop-signal task, in which subjects respond to a go stimulus on each trial, unless instructed not to by a subsequent, rare stop signal. We model across-trial learning of stop signal frequency (P(stop)) and stop-signal onset time (SSD) with a Bayesian hidden Markov model, and within-trial decision-making as optimal stochastic control. The model predicts that RT should increase with expected P(stop) and SSD, a prediction borne out by our human data. Thus, it appears that humans continuously monitor environmental statistics and adjust behavioral strategy accordingly. More broadly, our approach exemplifies the use of ”noisy” RT measures for extracting insights about cognitive and neural processing.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2015
Autor(en): Ma, Ning ; Yu, Angela J
Art des Eintrags: Bibliographie
Titel: Variability in Human Response Time Reflects Statistical Learning and Adaptive Decision-Making
Sprache: Englisch
Publikationsjahr: 2015
Ort: Seattle
Verlag: Cognitive Science Society
Buchtitel: Proceedings of the Annual Meeting of the Cognitive Science Society
Band einer Reihe: 37
Veranstaltungstitel: 37th Annual Meeting of the Cognitive Science Society (Cogsci 2015)
Veranstaltungsort: Pasadena, California
Veranstaltungsdatum: 23.07.2015-25.07.2015
URL / URN: https://cognitivesciencesociety.org/wp-content/uploads/2019/...
Zugehörige Links:
Kurzbeschreibung (Abstract):

Response time (RT) is an oft-used but ”noisy” behavioral measure in psychology. Here, we combine modeling and psychophysics to examine the hypothesis that RT variability may reflect ongoing statistical learning and consequent adjustment of behavioral strategy. We utilize the stop-signal task, in which subjects respond to a go stimulus on each trial, unless instructed not to by a subsequent, rare stop signal. We model across-trial learning of stop signal frequency (P(stop)) and stop-signal onset time (SSD) with a Bayesian hidden Markov model, and within-trial decision-making as optimal stochastic control. The model predicts that RT should increase with expected P(stop) and SSD, a prediction borne out by our human data. Thus, it appears that humans continuously monitor environmental statistics and adjust behavioral strategy accordingly. More broadly, our approach exemplifies the use of ”noisy” RT measures for extracting insights about cognitive and neural processing.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
Hinterlegungsdatum: 01 Nov 2023 08:38
Letzte Änderung: 17 Nov 2023 07:39
PPN: 513263349
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen