TU Darmstadt / ULB / TUbiblio

Three-Dimensional Urban Path Planning for Aerial Vehicles Regarding Many Objectives

Hohmann, Nikolas ; Brulin, Sebastian ; Adamy, Jürgen ; Olhofer, Markus (2023)
Three-Dimensional Urban Path Planning for Aerial Vehicles Regarding Many Objectives.
In: IEEE Open Journal of Intelligent Transportation Systems, 2023, 4
doi: 10.26083/tuprints-00024467
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Planning flight paths for unmanned aerial vehicles in urban areas requires consideration of safety, legal, and economic aspects as well as attention to social factors for gaining public acceptance. To solve this many-objective path planning problem in the three-dimensional space, we propose a hybrid framework combining an exact Dijkstra search and a metaheuristic evolutionary optimization. Given a start and an endpoint, we optimize a path regarding the risk in case of a system failure, the radio signal disturbance between the aerial vehicle and a ground station, the energy consumption, and the noise immission on city residents. The optimization includes constraints for static obstacle collision avoidance and compliance with the minimum flight altitude. The result is a set of smooth and three-dimensional paths that realize different trade-offs between the defined objectives. As an example, we consider an urban transportation application for aerial vehicles in San Francisco. For all tests, we use real-world data from OpenStreetMap. In a statistical evaluation, we test the efficiency of our framework against different state-of-the-art optimizers. Moreover, we extend the framework with two features that allow the user to integrate arbitrary objectives and unknown scenarios into the path planning framework.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Hohmann, Nikolas ; Brulin, Sebastian ; Adamy, Jürgen ; Olhofer, Markus
Art des Eintrags: Zweitveröffentlichung
Titel: Three-Dimensional Urban Path Planning for Aerial Vehicles Regarding Many Objectives
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Open Journal of Intelligent Transportation Systems
Jahrgang/Volume einer Zeitschrift: 4
DOI: 10.26083/tuprints-00024467
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24467
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Planning flight paths for unmanned aerial vehicles in urban areas requires consideration of safety, legal, and economic aspects as well as attention to social factors for gaining public acceptance. To solve this many-objective path planning problem in the three-dimensional space, we propose a hybrid framework combining an exact Dijkstra search and a metaheuristic evolutionary optimization. Given a start and an endpoint, we optimize a path regarding the risk in case of a system failure, the radio signal disturbance between the aerial vehicle and a ground station, the energy consumption, and the noise immission on city residents. The optimization includes constraints for static obstacle collision avoidance and compliance with the minimum flight altitude. The result is a set of smooth and three-dimensional paths that realize different trade-offs between the defined objectives. As an example, we consider an urban transportation application for aerial vehicles in San Francisco. For all tests, we use real-world data from OpenStreetMap. In a statistical evaluation, we test the efficiency of our framework against different state-of-the-art optimizers. Moreover, we extend the framework with two features that allow the user to integrate arbitrary objectives and unknown scenarios into the path planning framework.

Freie Schlagworte: Dijkstra, evolutionary algorithm, hybrid algorithm, many-objective, optimization, path planning, three-dimensional, transportation, UAM, unmanned aerial vehicle (UAV), urban, urban air mobility
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-244675
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Intelligente Systeme
Hinterlegungsdatum: 25 Aug 2023 12:10
Letzte Änderung: 30 Aug 2023 11:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen