TU Darmstadt / ULB / TUbiblio

Stochastic Model Predictive Control Utilizing Bayesian Neural Networks

Pohlodek, Johannes ; Alsmeier, Hendrik ; Morabito, Bruno ; Schlauch, Christian ; Savchenko, Anton ; Findeisen, Rolf (2023)
Stochastic Model Predictive Control Utilizing Bayesian Neural Networks.
2023 American Control Conference. San Diego, USA (31.05.2023-02.06.2023)
doi: 10.23919/ACC55779.2023.10156115
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Integrating measurements and historical data can enhance control systems through learning-based techniques, but ensuring performance and safety is challenging. Robust model predictive control strategies, like stochastic model predictive control, can address this by accounting for uncertainty. Gaussian processes are often used but have limitations with larger models and data sets. We explore Bayesian neural networks for stochastic learning-assisted control, comparing their performance to Gaussian processes on a wastewater treatment plant model. Results show Bayesian neural networks achieve similar performance, highlighting their potential as an alternative for control designs, particularly when handling extensive data sets.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Pohlodek, Johannes ; Alsmeier, Hendrik ; Morabito, Bruno ; Schlauch, Christian ; Savchenko, Anton ; Findeisen, Rolf
Art des Eintrags: Bibliographie
Titel: Stochastic Model Predictive Control Utilizing Bayesian Neural Networks
Sprache: Englisch
Publikationsjahr: 3 Juli 2023
Verlag: IEEE
Buchtitel: 2023 American Control Conference (ACC 2023)
Veranstaltungstitel: 2023 American Control Conference
Veranstaltungsort: San Diego, USA
Veranstaltungsdatum: 31.05.2023-02.06.2023
DOI: 10.23919/ACC55779.2023.10156115
Kurzbeschreibung (Abstract):

Integrating measurements and historical data can enhance control systems through learning-based techniques, but ensuring performance and safety is challenging. Robust model predictive control strategies, like stochastic model predictive control, can address this by accounting for uncertainty. Gaussian processes are often used but have limitations with larger models and data sets. We explore Bayesian neural networks for stochastic learning-assisted control, comparing their performance to Gaussian processes on a wastewater treatment plant model. Results show Bayesian neural networks achieve similar performance, highlighting their potential as an alternative for control designs, particularly when handling extensive data sets.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 17 Jul 2023 10:18
Letzte Änderung: 17 Jul 2023 10:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen