TU Darmstadt / ULB / TUbiblio

Parameter estimation for a bivariate beta distribution with arbitrary beta marginals and positive correlation

Trick, S. ; Rothkopf, C. A. ; Jäkel, F. (2023)
Parameter estimation for a bivariate beta distribution with arbitrary beta marginals and positive correlation.
In: Metron, 81 (1)
doi: 10.1007/s40300-023-00247-2
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We discuss a bivariate beta distribution that can model arbitrary beta-distributed marginals with a positive correlation. The distribution is constructed from six independent gamma- distributed random variates. While previous work used an approximate and sometimes inaccurate method to compute the distribution’s covariance and estimate its parameters, here, we derive all product moments and the exact covariance, which can be computed numerically. Based on this analysis we present an algorithm for estimating the parameters of the distribu- tion using moment matching. We evaluate this inference method in a simulation study and demonstrate its practical use on a data set consisting of predictions from two correlated fore- casters. Furthermore, we generalize the bivariate beta distribution to a correlated Dirichlet distribution, for which the proposed parameter estimation method can be used analogously.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Trick, S. ; Rothkopf, C. A. ; Jäkel, F.
Art des Eintrags: Bibliographie
Titel: Parameter estimation for a bivariate beta distribution with arbitrary beta marginals and positive correlation
Sprache: Englisch
Publikationsjahr: 9 Juni 2023
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Metron
Jahrgang/Volume einer Zeitschrift: 81
(Heft-)Nummer: 1
DOI: 10.1007/s40300-023-00247-2
URL / URN: https://link.springer.com/article/10.1007/s40300-023-00247-2
Kurzbeschreibung (Abstract):

We discuss a bivariate beta distribution that can model arbitrary beta-distributed marginals with a positive correlation. The distribution is constructed from six independent gamma- distributed random variates. While previous work used an approximate and sometimes inaccurate method to compute the distribution’s covariance and estimate its parameters, here, we derive all product moments and the exact covariance, which can be computed numerically. Based on this analysis we present an algorithm for estimating the parameters of the distribu- tion using moment matching. We evaluate this inference method in a simulation study and demonstrate its practical use on a data set consisting of predictions from two correlated fore- casters. Furthermore, we generalize the bivariate beta distribution to a correlated Dirichlet distribution, for which the proposed parameter estimation method can be used analogously.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
Forschungsfelder
Forschungsfelder > Information and Intelligence
Forschungsfelder > Information and Intelligence > Cognitive Science
03 Fachbereich Humanwissenschaften > Institut für Psychologie
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Modelle höherer Kognition
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Psychologie der Informationsverarbeitung
Hinterlegungsdatum: 09 Jun 2023 17:40
Letzte Änderung: 03 Jul 2023 05:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen