TU Darmstadt / ULB / TUbiblio

Rock beats Scissor: SVM based gesture recognition with data gloves

Achenbach, Philipp ; Müller, Philipp Niklas ; Wach, Tobias Alexander ; Tregel, Thomas ; Göbel, Stefan (2021)
Rock beats Scissor: SVM based gesture recognition with data gloves.
18th International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events. virtual Conference (22.03.2021-26.03.2021)
doi: 10.1109/PerComWorkshops51409.2021.9430962
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Hand gestures play an important role in human communication, particularly when auditory communication is limited. Akin to speech recognition, hand gesture recognition can therefore be a useful tool to facilitate communication and for more immersive computer interaction. In this paper, we examine the mobile recognition of hand gestures using data recorded with sensor gloves. We design a system based on Support Vector Machines (SVM), capable of recognizing 5 different hand gestures. In an experiment with 11 participants, we determine applicable hyperparameters based on performance on the training set which translates into 100% classification accuracy on the test set. In an additional practical experiment with 9 participants, our system achieves up to 98% in a personalized and up to 87.5% in a generalized model setting.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Achenbach, Philipp ; Müller, Philipp Niklas ; Wach, Tobias Alexander ; Tregel, Thomas ; Göbel, Stefan
Art des Eintrags: Bibliographie
Titel: Rock beats Scissor: SVM based gesture recognition with data gloves
Sprache: Englisch
Publikationsjahr: 24 Mai 2021
Verlag: IEEE
Buchtitel: 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)
Veranstaltungstitel: 18th International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 22.03.2021-26.03.2021
DOI: 10.1109/PerComWorkshops51409.2021.9430962
Kurzbeschreibung (Abstract):

Hand gestures play an important role in human communication, particularly when auditory communication is limited. Akin to speech recognition, hand gesture recognition can therefore be a useful tool to facilitate communication and for more immersive computer interaction. In this paper, we examine the mobile recognition of hand gestures using data recorded with sensor gloves. We design a system based on Support Vector Machines (SVM), capable of recognizing 5 different hand gestures. In an experiment with 11 participants, we determine applicable hyperparameters based on performance on the training set which translates into 100% classification accuracy on the test set. In an additional practical experiment with 9 participants, our system achieves up to 98% in a personalized and up to 87.5% in a generalized model setting.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Serious Games
Hinterlegungsdatum: 25 Jan 2023 10:55
Letzte Änderung: 28 Mär 2023 11:13
PPN: 506360687
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen