TU Darmstadt / ULB / TUbiblio

Bayesian Classifier Fusion with an Explicit Model of Correlation

Trick, Susanne ; Rothkopf, Constantin A. (2022)
Bayesian Classifier Fusion with an Explicit Model of Correlation.
The 25th International Conference on Artificial Intelligence. Valencia, Spain (30.03.2022-01.04.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Combining the outputs of multiple classifiers or experts into a single probabilistic classification is a fundamental task in machine learning with broad applications from classifier fusion to expert opinion pooling. Here we present a hierarchical Bayesian model of probabilistic classifier fusion based on a new correlated Dirichlet distribution. This distribution explicitly models positive correlations between marginally Dirichlet-distributed random vectors thereby allowing explicit modeling of correlations between base classifiers or experts. The proposed model naturally accommodates the classic Independent Opinion Pool and other independent fusion algorithms as special cases. It is evaluated by uncertainty reduction and correctness of fusion on synthetic and real-world data sets. We show that a change in performance of the fused classifier due to uncertainty reduction can be Bayes optimal even for highly correlated base classifiers.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Trick, Susanne ; Rothkopf, Constantin A.
Art des Eintrags: Bibliographie
Titel: Bayesian Classifier Fusion with an Explicit Model of Correlation
Sprache: Englisch
Publikationsjahr: 28 September 2022
Ort: Valencia, Spain
Verlag: PMLR
Buchtitel: Proceedings of The 25th International Conference on Artificial Intelligence and Statistics
Reihe: Proceedings of Machine Learning Research
Band einer Reihe: 151
Veranstaltungstitel: The 25th International Conference on Artificial Intelligence
Veranstaltungsort: Valencia, Spain
Veranstaltungsdatum: 30.03.2022-01.04.2022
Zugehörige Links:
Kurzbeschreibung (Abstract):

Combining the outputs of multiple classifiers or experts into a single probabilistic classification is a fundamental task in machine learning with broad applications from classifier fusion to expert opinion pooling. Here we present a hierarchical Bayesian model of probabilistic classifier fusion based on a new correlated Dirichlet distribution. This distribution explicitly models positive correlations between marginally Dirichlet-distributed random vectors thereby allowing explicit modeling of correlations between base classifiers or experts. The proposed model naturally accommodates the classic Independent Opinion Pool and other independent fusion algorithms as special cases. It is evaluated by uncertainty reduction and correctness of fusion on synthetic and real-world data sets. We show that a change in performance of the fused classifier due to uncertainty reduction can be Bayes optimal even for highly correlated base classifiers.

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Psychologie der Informationsverarbeitung
Zentrale Einrichtungen
Zentrale Einrichtungen > Centre for Cognitive Science (CCS)
Hinterlegungsdatum: 28 Sep 2022 13:06
Letzte Änderung: 28 Sep 2022 13:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen