TU Darmstadt / ULB / TUbiblio

AdaptiFont:Increasing Individuals’ Reading Speed with a Generative Font Model and Bayesian Optimization

Kadner, Florian ; Keller, Yannik ; Rothkopf, Constantin A. (2021)
AdaptiFont:Increasing Individuals’ Reading Speed with a Generative Font Model and Bayesian Optimization.
2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan (08.05.2021-13.05.2021)
doi: 10.1145/3411764.3445140
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Digital text has become one of the primary ways of exchanging knowledge, but text needs to be rendered to a screen to be read. We present AdaptiFont, a human-in-the-loop system that is aimed at interactively increasing readability of text displayed on a monitor. To this end, we first learn a generative font space with non-negative matrix factorization from a set of classic fonts. In this space we generate new true-type-fonts through active learning, render texts with the new font, and measure individual users’ reading speed. Bayesian optimization sequentially generates new fonts on the fly to progressively increase individuals’ reading speed. The results of a user study show that this adaptive font generation system finds regions in the font space corresponding to high reading speeds, that these fonts significantly increase participants’ reading speed, and that the found fonts are significantly different across individual readers.}, booktitle = {Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Kadner, Florian ; Keller, Yannik ; Rothkopf, Constantin A.
Art des Eintrags: Bibliographie
Titel: AdaptiFont:Increasing Individuals’ Reading Speed with a Generative Font Model and Bayesian Optimization
Sprache: Englisch
Publikationsjahr: 2021
Ort: Yokohama Japan
Verlag: Association for Computing MachineryNew YorkNYUnited States
Buchtitel: CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
Veranstaltungstitel: 2021 CHI Conference on Human Factors in Computing Systems
Veranstaltungsort: Yokohama Japan
Veranstaltungsdatum: 08.05.2021-13.05.2021
DOI: 10.1145/3411764.3445140
URL / URN: https://dl.acm.org/doi/10.1145/3411764.3445140
Kurzbeschreibung (Abstract):

Digital text has become one of the primary ways of exchanging knowledge, but text needs to be rendered to a screen to be read. We present AdaptiFont, a human-in-the-loop system that is aimed at interactively increasing readability of text displayed on a monitor. To this end, we first learn a generative font space with non-negative matrix factorization from a set of classic fonts. In this space we generate new true-type-fonts through active learning, render texts with the new font, and measure individual users’ reading speed. Bayesian optimization sequentially generates new fonts on the fly to progressively increase individuals’ reading speed. The results of a user study show that this adaptive font generation system finds regions in the font space corresponding to high reading speeds, that these fonts significantly increase participants’ reading speed, and that the found fonts are significantly different across individual readers.}, booktitle = {Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems

Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Psychologie
03 Fachbereich Humanwissenschaften > Institut für Psychologie > Psychologie der Informationsverarbeitung
Zentrale Einrichtungen
Zentrale Einrichtungen > Centre for Cognitive Science (CCS)
Hinterlegungsdatum: 28 Sep 2022 12:23
Letzte Änderung: 28 Sep 2022 12:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen