TU Darmstadt / ULB / TUbiblio

Using Information-Seeking Argument Mining to Improve Service

Skiera, Bernd ; Yan, Shunyao ; Daxenberger, Johannes ; Dombois, Marcus ; Gurevych, Iryna (2022)
Using Information-Seeking Argument Mining to Improve Service.
In: Journal of Service Research
doi: 10.1177/10946705221110845
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

If service providers can identify reasons users are in favor of or against a service, they have insightful information that can help them understand user behavior and what they need to do to change such behavior. This article argues that the novel text-mining technique referred to as information-seeking argument mining (IS-AM) can identify these reasons. The empirical study applies IS-AM to news articles and reviews about electric scooter-sharing systems (i.e., a service enabling the short-term rentals of electric motorized scooters). Its results point to IS-AM as a promising technique to improve service; the data enable the authors to identify 40 reasons to use or not use electric scooter-sharing systems, as well as their importance to users. Furthermore, the results show that news articles are better data sources than reviews because they are longer and contain more arguments and, thus, reasons.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Skiera, Bernd ; Yan, Shunyao ; Daxenberger, Johannes ; Dombois, Marcus ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Using Information-Seeking Argument Mining to Improve Service
Sprache: Englisch
Publikationsjahr: 29 Juni 2022
Verlag: SAGE Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Service Research
DOI: 10.1177/10946705221110845
Kurzbeschreibung (Abstract):

If service providers can identify reasons users are in favor of or against a service, they have insightful information that can help them understand user behavior and what they need to do to change such behavior. This article argues that the novel text-mining technique referred to as information-seeking argument mining (IS-AM) can identify these reasons. The empirical study applies IS-AM to news articles and reviews about electric scooter-sharing systems (i.e., a service enabling the short-term rentals of electric motorized scooters). Its results point to IS-AM as a promising technique to improve service; the data enable the authors to identify 40 reasons to use or not use electric scooter-sharing systems, as well as their importance to users. Furthermore, the results show that news articles are better data sources than reviews because they are longer and contain more arguments and, thus, reasons.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 04 Aug 2022 09:36
Letzte Änderung: 22 Nov 2022 08:24
PPN: 501826130
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen