Steuer, Tim ; Filighera, Anna ; Tregel, Thomas ; Miede, André (2022)
Educational Automatic Question Generation Improves Reading Comprehension in Non-native Speakers: A Learner-Centric Case Study.
In: Frontiers in Artificial Intelligence, 2022, 5
doi: 10.26083/tuprints-00021507
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Background: Asking learners manually authored questions about their readings improves their text comprehension. Yet, not all reading materials comprise sufficiently many questions and many informal reading materials do not contain any. Therefore, automatic question generation has great potential in education as it may alleviate the lack of questions. However, currently, there is insufficient evidence on whether or not those automatically generated questions are beneficial for learners' understanding in reading comprehension scenarios.
Objectives: We investigate the positive and negative effects of automatically generated short-answer questions on learning outcomes in a reading comprehension scenario.
Methods: A learner-centric, in between-groups, quasi-experimental reading comprehension case study with 48 college students is conducted. We test two hypotheses concerning positive and negative effects on learning outcomes during the text comprehension of science texts and descriptively explore how the generated questions influenced learners.
Results: The results show a positive effect of the generated questions on the participants learning outcomes. However, we cannot entirely exclude question-induced adverse side effects on learning of non-questioned information. Interestingly, questions identified as computer-generated by learners nevertheless seemed to benefit their understanding.
Take Away: Automatic question generation positively impacts reading comprehension in the given scenario. In the reported case study, even questions recognized as computer-generated supported reading comprehension.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Steuer, Tim ; Filighera, Anna ; Tregel, Thomas ; Miede, André |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Educational Automatic Question Generation Improves Reading Comprehension in Non-native Speakers: A Learner-Centric Case Study |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | Frontiers |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Frontiers in Artificial Intelligence |
Jahrgang/Volume einer Zeitschrift: | 5 |
Kollation: | 14 Seiten |
DOI: | 10.26083/tuprints-00021507 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21507 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung aus gefördertem Golden Open Access |
Kurzbeschreibung (Abstract): | Background: Asking learners manually authored questions about their readings improves their text comprehension. Yet, not all reading materials comprise sufficiently many questions and many informal reading materials do not contain any. Therefore, automatic question generation has great potential in education as it may alleviate the lack of questions. However, currently, there is insufficient evidence on whether or not those automatically generated questions are beneficial for learners' understanding in reading comprehension scenarios. Objectives: We investigate the positive and negative effects of automatically generated short-answer questions on learning outcomes in a reading comprehension scenario. Methods: A learner-centric, in between-groups, quasi-experimental reading comprehension case study with 48 college students is conducted. We test two hypotheses concerning positive and negative effects on learning outcomes during the text comprehension of science texts and descriptively explore how the generated questions influenced learners. Results: The results show a positive effect of the generated questions on the participants learning outcomes. However, we cannot entirely exclude question-induced adverse side effects on learning of non-questioned information. Interestingly, questions identified as computer-generated by learners nevertheless seemed to benefit their understanding. Take Away: Automatic question generation positively impacts reading comprehension in the given scenario. In the reported case study, even questions recognized as computer-generated supported reading comprehension. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-215072 |
Zusätzliche Informationen: | Keywords: automatic question generation, self-assessment, natural language processing, reading comprehension, education |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation |
Hinterlegungsdatum: | 10 Jun 2022 11:09 |
Letzte Änderung: | 23 Jun 2022 06:41 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Educational Automatic Question Generation Improves Reading Comprehension in Non-native Speakers: A Learner-Centric Case Study. (deposited 10 Jun 2022 11:09) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |