TU Darmstadt / ULB / TUbiblio

Educational Automatic Question Generation Improves Reading Comprehension in Non-native Speakers: A Learner-Centric Case Study

Steuer, Tim ; Filighera, Anna ; Tregel, Thomas ; Miede, André (2022)
Educational Automatic Question Generation Improves Reading Comprehension in Non-native Speakers: A Learner-Centric Case Study.
In: Frontiers in Artificial Intelligence, 2022, 5
doi: 10.26083/tuprints-00021507
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Background: Asking learners manually authored questions about their readings improves their text comprehension. Yet, not all reading materials comprise sufficiently many questions and many informal reading materials do not contain any. Therefore, automatic question generation has great potential in education as it may alleviate the lack of questions. However, currently, there is insufficient evidence on whether or not those automatically generated questions are beneficial for learners' understanding in reading comprehension scenarios.

Objectives: We investigate the positive and negative effects of automatically generated short-answer questions on learning outcomes in a reading comprehension scenario.

Methods: A learner-centric, in between-groups, quasi-experimental reading comprehension case study with 48 college students is conducted. We test two hypotheses concerning positive and negative effects on learning outcomes during the text comprehension of science texts and descriptively explore how the generated questions influenced learners.

Results: The results show a positive effect of the generated questions on the participants learning outcomes. However, we cannot entirely exclude question-induced adverse side effects on learning of non-questioned information. Interestingly, questions identified as computer-generated by learners nevertheless seemed to benefit their understanding.

Take Away: Automatic question generation positively impacts reading comprehension in the given scenario. In the reported case study, even questions recognized as computer-generated supported reading comprehension.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Steuer, Tim ; Filighera, Anna ; Tregel, Thomas ; Miede, André
Art des Eintrags: Zweitveröffentlichung
Titel: Educational Automatic Question Generation Improves Reading Comprehension in Non-native Speakers: A Learner-Centric Case Study
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Frontiers
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Artificial Intelligence
Jahrgang/Volume einer Zeitschrift: 5
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00021507
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21507
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Background: Asking learners manually authored questions about their readings improves their text comprehension. Yet, not all reading materials comprise sufficiently many questions and many informal reading materials do not contain any. Therefore, automatic question generation has great potential in education as it may alleviate the lack of questions. However, currently, there is insufficient evidence on whether or not those automatically generated questions are beneficial for learners' understanding in reading comprehension scenarios.

Objectives: We investigate the positive and negative effects of automatically generated short-answer questions on learning outcomes in a reading comprehension scenario.

Methods: A learner-centric, in between-groups, quasi-experimental reading comprehension case study with 48 college students is conducted. We test two hypotheses concerning positive and negative effects on learning outcomes during the text comprehension of science texts and descriptively explore how the generated questions influenced learners.

Results: The results show a positive effect of the generated questions on the participants learning outcomes. However, we cannot entirely exclude question-induced adverse side effects on learning of non-questioned information. Interestingly, questions identified as computer-generated by learners nevertheless seemed to benefit their understanding.

Take Away: Automatic question generation positively impacts reading comprehension in the given scenario. In the reported case study, even questions recognized as computer-generated supported reading comprehension.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-215072
Zusätzliche Informationen:

Keywords: automatic question generation, self-assessment, natural language processing, reading comprehension, education

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation
Hinterlegungsdatum: 10 Jun 2022 11:09
Letzte Änderung: 23 Jun 2022 06:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen