TU Darmstadt / ULB / TUbiblio

Applications and Techniques for Fast Machine Learning in Science

McCarn Deiana, Allison ; Tran, Nhan ; Agar, Joshua ; Blott, Michaela ; Di Guglielmo, Giuseppe ; Duarte, Javier ; Harris, Philip ; Hauck, Scott ; Liu, Mia ; Neubauer, Mark S. ; Ngadiuba, Jennifer ; Ogrenci-Memik, Seda ; Pierini, Maurizio ; Aarrestad, Thea ; Bähr, Steffen ; Becker, Jürgen ; Berthold, Anne-Sophie ; Bonventre, Richard J. ; Müller Bravo, Tomás E. ; Diefenthaler, Markus ; Dong, Zhen ; Fritzsche, Nick ; Gholami, Amir ; Govorkova, Ekaterina ; Guo, Dongning ; Hazelwood, Kyle J. ; Herwig, Christian ; Khan, Babar ; Kim, Sehoon ; Klijnsma, Thomas ; Liu, Yaling ; Lo, Kin Ho ; Nguyen, Tri ; Pezzullo, Gianantonio ; Rasoulinezhad, Seyedramin ; Rivera, Ryan A. ; Scholberg, Kate ; Selig, Justin ; Sen, Sougata ; Strukov, Dmitri ; Tang, William ; Thais, Savannah ; Unger, Kai Lukas ; Vilalta, Ricardo ; Krosigk, Belina von ; Wang, Shen ; Warburton, Thomas K. (2022)
Applications and Techniques for Fast Machine Learning in Science.
In: Frontiers in Big Data, 2022, 5
doi: 10.26083/tuprints-00021245
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): McCarn Deiana, Allison ; Tran, Nhan ; Agar, Joshua ; Blott, Michaela ; Di Guglielmo, Giuseppe ; Duarte, Javier ; Harris, Philip ; Hauck, Scott ; Liu, Mia ; Neubauer, Mark S. ; Ngadiuba, Jennifer ; Ogrenci-Memik, Seda ; Pierini, Maurizio ; Aarrestad, Thea ; Bähr, Steffen ; Becker, Jürgen ; Berthold, Anne-Sophie ; Bonventre, Richard J. ; Müller Bravo, Tomás E. ; Diefenthaler, Markus ; Dong, Zhen ; Fritzsche, Nick ; Gholami, Amir ; Govorkova, Ekaterina ; Guo, Dongning ; Hazelwood, Kyle J. ; Herwig, Christian ; Khan, Babar ; Kim, Sehoon ; Klijnsma, Thomas ; Liu, Yaling ; Lo, Kin Ho ; Nguyen, Tri ; Pezzullo, Gianantonio ; Rasoulinezhad, Seyedramin ; Rivera, Ryan A. ; Scholberg, Kate ; Selig, Justin ; Sen, Sougata ; Strukov, Dmitri ; Tang, William ; Thais, Savannah ; Unger, Kai Lukas ; Vilalta, Ricardo ; Krosigk, Belina von ; Wang, Shen ; Warburton, Thomas K.
Art des Eintrags: Zweitveröffentlichung
Titel: Applications and Techniques for Fast Machine Learning in Science
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Big Data
Jahrgang/Volume einer Zeitschrift: 5
Kollation: 56 Seiten
DOI: 10.26083/tuprints-00021245
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21245
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.

Freie Schlagworte: machine learning for science, big data, particle physics, codesign, coprocessors, heterogeneous computing, fast machine learning
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-212450
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Eingebettete Systeme und ihre Anwendungen
Hinterlegungsdatum: 09 Mai 2022 13:24
Letzte Änderung: 10 Mai 2022 06:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen