TU Darmstadt / ULB / TUbiblio

Modeling longitudinal bunched beam dynamics in hadron synchrotrons using scaled fourier-hermite expansions

Groß, Kerstin ; Lens, Dieter Etienne Mia (2022)
Modeling longitudinal bunched beam dynamics in hadron synchrotrons using scaled fourier-hermite expansions.
IPAC2013: the 4th International Particle Accelerator Conference. Shanghai, China (12.05.2013-17.05.2013)
doi: 10.26083/tuprints-00020333
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

To devise control strategies and to analyze the stability of systems with feedback, a set of few ordinary differential equations (ODEs) describing the underlying dynamics is required. It is deduced by combining two approaches not used in that context before: (I) Numerical Fourier-Hermite solutions of the Vlasov equation have been studied for over fifty years [1, 2]. The idea to expand the distribution function in Fourier series in space and Hermite functions in velocity is transferred to the dynamics of bunched beams in hadron synchrotrons in this contribution. The Hermite basis is a natural choice for plasmas with Maxwellian velocity profile as well as for particle beams with Gaussian momentum spread. The Fourier basis used for spatially nearly uniform plasmas has to be adapted to bunched beams where the beam profile is not uniform in phase. (II) This is achieved analogously to the deduction of the three term recursion relations to construct orthogonal polynomials, but applied to Fourier series with the weight function taken from the Hamiltonian. The resulting system of ODEs for the expansion coefficients of desired order - dependent on the number of functions retained - is roughly checked against macro particle tracking simulations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Groß, Kerstin ; Lens, Dieter Etienne Mia
Art des Eintrags: Zweitveröffentlichung
Titel: Modeling longitudinal bunched beam dynamics in hadron synchrotrons using scaled fourier-hermite expansions
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2013
Verlag: Joint Accelerator Conferences Website
Buchtitel: IPAC2013: Proceedings of the 4th International Particle Accelerator Conference
Veranstaltungstitel: IPAC2013: the 4th International Particle Accelerator Conference
Veranstaltungsort: Shanghai, China
Veranstaltungsdatum: 12.05.2013-17.05.2013
DOI: 10.26083/tuprints-00020333
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20333
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

To devise control strategies and to analyze the stability of systems with feedback, a set of few ordinary differential equations (ODEs) describing the underlying dynamics is required. It is deduced by combining two approaches not used in that context before: (I) Numerical Fourier-Hermite solutions of the Vlasov equation have been studied for over fifty years [1, 2]. The idea to expand the distribution function in Fourier series in space and Hermite functions in velocity is transferred to the dynamics of bunched beams in hadron synchrotrons in this contribution. The Hermite basis is a natural choice for plasmas with Maxwellian velocity profile as well as for particle beams with Gaussian momentum spread. The Fourier basis used for spatially nearly uniform plasmas has to be adapted to bunched beams where the beam profile is not uniform in phase. (II) This is achieved analogously to the deduction of the three term recursion relations to construct orthogonal polynomials, but applied to Fourier series with the weight function taken from the Hamiltonian. The resulting system of ODEs for the expansion coefficients of desired order - dependent on the number of functions retained - is roughly checked against macro particle tracking simulations.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-203330
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 19 Jan 2022 09:24
Letzte Änderung: 24 Jan 2022 09:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen