TU Darmstadt / ULB / TUbiblio

Behaviour investigation of a risk-aware driving model for trajectory prediction

Müller, Fabian ; Eggert, Julian (2021)
Behaviour investigation of a risk-aware driving model for trajectory prediction.
5th International Symposium on Future Active Safety Technology toward Zero Accidents (FAST-zero ’19). Blacksburg, VA, USA (09.09.2019-11.09.2019)
doi: 10.26083/tuprints-00020255
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The prevention of risky situations is one of the main tasks in autonomous driving (AD) and intelligent driving assistant systems (ADAS). Uncertainty in the traffic participants’ behavior and the sensor measurements leads to critical situations, which have to be anticipated by appropriate risk prediction approaches. The risk prediction itself requires dedicated driver models which are interaction sensitive and computationally cheap, to efficiently simulate how a scene might evolve. In this paper, we present a new driver model which is aware of the usual risks encountered in normal driving scenarios. It can cope with longitudinal as well as lateral collision risks, and adjusts its behavior by minimizing the expected integral risk. We show how our model is suited for coping with parallel lane scenarios like overtaking, following and in-between positioning by analyzing its behavior and stability.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Müller, Fabian ; Eggert, Julian
Art des Eintrags: Zweitveröffentlichung
Titel: Behaviour investigation of a risk-aware driving model for trajectory prediction
Sprache: Englisch
Publikationsjahr: 2021
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Buchtitel: Proceedings of the 5th International Symposium on Future Active Safety Technology toward Zero Accidents
Kollation: 8 Seiten
Veranstaltungstitel: 5th International Symposium on Future Active Safety Technology toward Zero Accidents (FAST-zero ’19)
Veranstaltungsort: Blacksburg, VA, USA
Veranstaltungsdatum: 09.09.2019-11.09.2019
DOI: 10.26083/tuprints-00020255
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20255
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

The prevention of risky situations is one of the main tasks in autonomous driving (AD) and intelligent driving assistant systems (ADAS). Uncertainty in the traffic participants’ behavior and the sensor measurements leads to critical situations, which have to be anticipated by appropriate risk prediction approaches. The risk prediction itself requires dedicated driver models which are interaction sensitive and computationally cheap, to efficiently simulate how a scene might evolve. In this paper, we present a new driver model which is aware of the usual risks encountered in normal driving scenarios. It can cope with longitudinal as well as lateral collision risks, and adjusts its behavior by minimizing the expected integral risk. We show how our model is suited for coping with parallel lane scenarios like overtaking, following and in-between positioning by analyzing its behavior and stability.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-202551
Zusätzliche Informationen:

Keywords: Risk Assessment, Safety, Trajectory Prediction, Trajectory Planning

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 21 Dez 2021 13:08
Letzte Änderung: 22 Dez 2021 11:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen