TU Darmstadt / ULB / TUbiblio

Microstrain-range giant piezoresistivity of silicon oxycarbide thin films under mechanical cyclic loads

Ricohermoso, Emmanuel ; Klug, Florian ; Schlaak, Helmut ; Riedel, Ralf ; Ionescu, Emanuel (2022)
Microstrain-range giant piezoresistivity of silicon oxycarbide thin films under mechanical cyclic loads.
In: Materials & Design, 213
doi: 10.1016/j.matdes.2021.110323
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In the present study, thin-film strain gauge element arrays were prepared based on large-area silicon oxycarbide thin films and lithographic deposition of structured electrodes. The individual strain gauge elements were systematically investigated concerning their piezoresistive behavior at ambient temperature and shown to possess giant piezoresistivity with gauge factors in the range of 3–5 × 10³. This has been correlated with the large charge carrier mobility in the silicon oxycarbide thin films (i.e., 186 cm(2) x V(-1) x s(−1) as well as with a unique phase composition and morphology thereof, consisting of high-conductivity carbon-rich segregations homogeneously dispersed within a silicon oxycarbide-based matrix. The studied strain gauge elements were evaluated in both cyclic tensile and compression load modes and showed excellent reversibility and short response times. The process capability of the strain gauge elements has been statistically assessed and revealed good robustness and replicability which may be further improved. The present work provides a robust and highly reproducible manufacturing process for an ultrasensitive strain gauge prototype and thus points towards a great potential concerning the use of silicon oxycarbides in MEMS-related applications.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Ricohermoso, Emmanuel ; Klug, Florian ; Schlaak, Helmut ; Riedel, Ralf ; Ionescu, Emanuel
Art des Eintrags: Bibliographie
Titel: Microstrain-range giant piezoresistivity of silicon oxycarbide thin films under mechanical cyclic loads
Sprache: Englisch
Publikationsjahr: Januar 2022
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials & Design
Jahrgang/Volume einer Zeitschrift: 213
DOI: 10.1016/j.matdes.2021.110323
Kurzbeschreibung (Abstract):

In the present study, thin-film strain gauge element arrays were prepared based on large-area silicon oxycarbide thin films and lithographic deposition of structured electrodes. The individual strain gauge elements were systematically investigated concerning their piezoresistive behavior at ambient temperature and shown to possess giant piezoresistivity with gauge factors in the range of 3–5 × 10³. This has been correlated with the large charge carrier mobility in the silicon oxycarbide thin films (i.e., 186 cm(2) x V(-1) x s(−1) as well as with a unique phase composition and morphology thereof, consisting of high-conductivity carbon-rich segregations homogeneously dispersed within a silicon oxycarbide-based matrix. The studied strain gauge elements were evaluated in both cyclic tensile and compression load modes and showed excellent reversibility and short response times. The process capability of the strain gauge elements has been statistically assessed and revealed good robustness and replicability which may be further improved. The present work provides a robust and highly reproducible manufacturing process for an ultrasensitive strain gauge prototype and thus points towards a great potential concerning the use of silicon oxycarbides in MEMS-related applications.

Freie Schlagworte: Polymer derived ceramics, Piezoresistivity, Strain gauge, Sensor
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Mikrotechnik und Elektromechanische Systeme
TU-Projekte: DFG|IO64/14-1|Heisenberg-Förderung
Hinterlegungsdatum: 17 Dez 2021 08:20
Letzte Änderung: 17 Dez 2021 08:20
PPN:
Projekte: German Science Foundation (DFG Germany), Grant Number 411658150, German Research Foundation (DFG), European Commission, Grant Number IO 64/14-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen