TU Darmstadt / ULB / TUbiblio

Time-Course Sensitive Collision Probability Model for Risk Estimation

Müller, Fabian ; Eggert, Julian (2021)
Time-Course Sensitive Collision Probability Model for Risk Estimation.
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). Rhodes, Greece (virtual conference) (20.09.2020-23.09.2020)
doi: 10.26083/tuprints-00019146
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Avoiding critical situations is a prerequisite for Advanced Driver Assistant Systems and Autonomous Driving to decrease the number of total hazards and fatal collisions. As a guide for safe motion behavior and for avoiding critical situations in complex scenarios with several interacting traffic participants, an appropriate risk measurement is necessary. It should incorporate system-inherent uncertainties like present in environment recognition, behavior predictions and physical model assumptions. In this paper, we introduce a time-course-aware incremental risk model for motion planning which predicts state distributions along forecasted trajectories and regards their magnitude evolution by the Survival Theory and their shape adaptation by removing collided distribution parts while preserving statistical moments. Our approach is able to reproduce motion risk probability costs as found by particle-based Monte-Carlo (MC) simulations in a range of scenarios, at much lower computational costs.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Müller, Fabian ; Eggert, Julian
Art des Eintrags: Zweitveröffentlichung
Titel: Time-Course Sensitive Collision Probability Model for Risk Estimation
Sprache: Englisch
Publikationsjahr: 2021
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: IEEE
Kollation: 8 ungezählte Seiten
Veranstaltungstitel: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
Veranstaltungsort: Rhodes, Greece (virtual conference)
Veranstaltungsdatum: 20.09.2020-23.09.2020
DOI: 10.26083/tuprints-00019146
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19146
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Avoiding critical situations is a prerequisite for Advanced Driver Assistant Systems and Autonomous Driving to decrease the number of total hazards and fatal collisions. As a guide for safe motion behavior and for avoiding critical situations in complex scenarios with several interacting traffic participants, an appropriate risk measurement is necessary. It should incorporate system-inherent uncertainties like present in environment recognition, behavior predictions and physical model assumptions. In this paper, we introduce a time-course-aware incremental risk model for motion planning which predicts state distributions along forecasted trajectories and regards their magnitude evolution by the Survival Theory and their shape adaptation by removing collided distribution parts while preserving statistical moments. Our approach is able to reproduce motion risk probability costs as found by particle-based Monte-Carlo (MC) simulations in a range of scenarios, at much lower computational costs.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-191465
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Robotik (ab 01.08.2022 umbenannt in Regelungsmethoden und Intelligente Systeme)
Hinterlegungsdatum: 14 Jul 2021 12:07
Letzte Änderung: 20 Jul 2021 07:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen