TU Darmstadt / ULB / TUbiblio

Preoperative Planning for Guidewires Employing Shape-Regularized Segmentation and Optimized Trajectories

Fauser, Johannes ; Fuchs, Moritz ; Ghazy, Ahmed ; Dorweiler, Bernhard ; Mukhopadhyay, Anirban (2019)
Preoperative Planning for Guidewires Employing Shape-Regularized Segmentation and Optimized Trajectories.
MLCN'19 - International Workshop on Machine Learning in Clinical Neuroimaging. Shenzhen, China (17.10.2019-17.10.2019)
doi: 10.1007/978-3-030-32695-1_2
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Upcoming robotic interventions for endovascular procedures can significantly reduce the high radiation exposure currently endured by surgeons. Robotically driven guidewires replace manual insertion and leave the surgeon the task of planning optimal trajectories based on segmentation of associated risk structures. However, such a pipeline brings new challenges. While Deep learning based segmentation such as U-Net can achieve outstanding Dice scores, it fails to provide suitable results for trajectory planning in annotation scarce environments. We propose a preoperative pipeline featuring a shape regularized U-Net that extracts coherent anatomies from pixelwise predictions. It uses Rapidly-exploring Random Trees together with convex optimization for locally optimal planning. Our experiments on two publicly available data sets evaluate the complete pipeline. We show the benefits of our approach in a functional evaluation including both segmentation and planning metrics: While we achieve comparable Dice, Hausdorff distances and planning metrics such as success rate of motion planning algorithms are significantly better than U-Net.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Fauser, Johannes ; Fuchs, Moritz ; Ghazy, Ahmed ; Dorweiler, Bernhard ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Preoperative Planning for Guidewires Employing Shape-Regularized Segmentation and Optimized Trajectories
Sprache: Englisch
Publikationsjahr: 2019
Veranstaltungstitel: MLCN'19 - International Workshop on Machine Learning in Clinical Neuroimaging
Veranstaltungsort: Shenzhen, China
Veranstaltungsdatum: 17.10.2019-17.10.2019
DOI: 10.1007/978-3-030-32695-1_2
URL / URN: https://link.springer.com/book/10.1007/978-3-030-32695-1
Kurzbeschreibung (Abstract):

Upcoming robotic interventions for endovascular procedures can significantly reduce the high radiation exposure currently endured by surgeons. Robotically driven guidewires replace manual insertion and leave the surgeon the task of planning optimal trajectories based on segmentation of associated risk structures. However, such a pipeline brings new challenges. While Deep learning based segmentation such as U-Net can achieve outstanding Dice scores, it fails to provide suitable results for trajectory planning in annotation scarce environments. We propose a preoperative pipeline featuring a shape regularized U-Net that extracts coherent anatomies from pixelwise predictions. It uses Rapidly-exploring Random Trees together with convex optimization for locally optimal planning. Our experiments on two publicly available data sets evaluate the complete pipeline. We show the benefits of our approach in a functional evaluation including both segmentation and planning metrics: While we achieve comparable Dice, Hausdorff distances and planning metrics such as success rate of motion planning algorithms are significantly better than U-Net.

Freie Schlagworte: Preoperative planning Evaluation
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 09 Apr 2020 10:59
Letzte Änderung: 09 Apr 2020 10:59
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen