TU Darmstadt / ULB / TUbiblio

High-resolution transmission electron microscopy investigation of diffusion in metallic glass multilayer films

Ketov, S. V. ; Ivanov, Yu P. ; Sopu, D. ; Louzguine-Luzgin, D. V. ; Suryanarayana, C. ; Rodin, A. O. ; Schöberl, T. ; Greer, A. L. ; Eckert, J. (2019)
High-resolution transmission electron microscopy investigation of diffusion in metallic glass multilayer films.
In: Materials Today Advances, 1
doi: 10.1016/j.mtadv.2019.01.003
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Lack of plasticity is one of the main disadvantages of metallic glasses. One of the solutions to this problem can be composite materials. Diffusion bonding is promising for composite fabrication. In the present work the diffusion process in glassy multilayer films was investigated. A combination of advanced transmission electron microscopy (TEM) methods and precision sputtering techniques allows visualization and study of diffusion in amorphous metallic layers with high resolution. Multilayered films were obtained by radio frequency sputter deposition of Zr-Cu and Zr-Pd. The multilayers were annealed under a high vacuum (10−5 Pa) for 1 and 5 h at 400 °C, that is, well below the crystallization temperatures but very close to the glass-transition temperatures of both types of the glassy layer. The structural evolution in the deposited films was investigated by high-resolution transmission electron microscopy. It was observed that, despite the big differences in the atomic mass and size, Pd and Cu have similar diffusion coefficients. Surprisingly, 1 h of annealing results in formation of metastable copper nanocrystals in the Zr-Cu layers which, however, disappear after 5 h of annealing. This effect may be connected with nanovoid formation under a complex stress state evolving upon annealing, and is related to the exceptionally slow relaxation of the glassy layers sealed with a Ta overlayer.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Ketov, S. V. ; Ivanov, Yu P. ; Sopu, D. ; Louzguine-Luzgin, D. V. ; Suryanarayana, C. ; Rodin, A. O. ; Schöberl, T. ; Greer, A. L. ; Eckert, J.
Art des Eintrags: Bibliographie
Titel: High-resolution transmission electron microscopy investigation of diffusion in metallic glass multilayer films
Sprache: Englisch
Publikationsjahr: 7 März 2019
Verlag: Elsevier Ltd.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials Today Advances
Jahrgang/Volume einer Zeitschrift: 1
DOI: 10.1016/j.mtadv.2019.01.003
URL / URN: https://doi.org/10.1016/j.mtadv.2019.01.003
Kurzbeschreibung (Abstract):

Lack of plasticity is one of the main disadvantages of metallic glasses. One of the solutions to this problem can be composite materials. Diffusion bonding is promising for composite fabrication. In the present work the diffusion process in glassy multilayer films was investigated. A combination of advanced transmission electron microscopy (TEM) methods and precision sputtering techniques allows visualization and study of diffusion in amorphous metallic layers with high resolution. Multilayered films were obtained by radio frequency sputter deposition of Zr-Cu and Zr-Pd. The multilayers were annealed under a high vacuum (10−5 Pa) for 1 and 5 h at 400 °C, that is, well below the crystallization temperatures but very close to the glass-transition temperatures of both types of the glassy layer. The structural evolution in the deposited films was investigated by high-resolution transmission electron microscopy. It was observed that, despite the big differences in the atomic mass and size, Pd and Cu have similar diffusion coefficients. Surprisingly, 1 h of annealing results in formation of metastable copper nanocrystals in the Zr-Cu layers which, however, disappear after 5 h of annealing. This effect may be connected with nanovoid formation under a complex stress state evolving upon annealing, and is related to the exceptionally slow relaxation of the glassy layers sealed with a Ta overlayer.

Freie Schlagworte: Metallic glasses, Multilayered films, Diffusion, HRTEM
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 28 Jan 2020 07:25
Letzte Änderung: 13 Jan 2024 13:45
PPN:
Projekte: SO 1518/1-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen